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Preface

The RECOMB Satellite Workshop on Comparative Genomics (RECOMB-CG)
is a forum on all aspects and components of Comparative Genomics ranging from
new quantitative discoveries about genome structures and processes to theorems
on the complexity of computational problems inspired by genome comparison.

Due to the interdiciplinary nature of the workshop, papers could be submitted
merely for presentation at the workshop or for presentation at the workshop and
publication in the proceedings. Speakers presenting papers of the former category
are listed under Selected Presentations below.

The workshop was a great success scientifically as well as socially. I want to
thank all participants, the members of the program committee as well as referees
and, especially, the excellent invited speakers.
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Sèverine Bérard, Anne Bergeron, and Cedric Chauve

Toward a Phylogenetically Aware Algorithm
for Fast DNA Similarity Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Jeremy Buhler and Rachel Nordgren

Multiple Genome Alignment by Clustering Pairwise Matches . . . . . . . . . . . . 30
Jeong-Hyeon Choi, Kwangmin Choi, Hwan-Gue Cho, and Sun Kim

On the Structure of Reconciliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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Conservation of Combinatorial Structures
in Evolution Scenarios

Sèverine Bérard1, Anne Bergeron2, and Cedric Chauve2

1 LIRMM, Montpellier, France
berard@lirmm.fr

2 LaCIM, Université du Québec à Montréal, Canada
{anne,chauve}@lacim.uqam.ca

Abstract. This paper investigates the problem of conservation of com-
binatorial structures in genome rearrangement scenarios. We give a char-
acterization of a class of scenarios that conserve all common intervals,
called commuting scenarios, and a characterization of permutations for
which commuting scenarios exist. We show that measuring conservation
of common intervals can be useful tool in assessing the quality of rear-
rangement scenarios, by investigating in detail three specific scenarios
involving the mouse, rat and human X chromosomes.

1 Introduction

The reconstruction of evolution scenarios based on genome rearrangements has
proven to be a powerful tool in understanding the evolution of close species,
especially mammals. For example, in the last two years, several very interesting
evolution scenarios have been proposed between the mouse and the human [15],
and the between human, the mouse and the newly sequenced Norway rat [7, 10],
using the MGR and GRIMM software [6, 17].

MGR relies heavily on sorting signed permutations by inversions and the re-
lated median problem [14]. However, the number of parsimonious sequences of
inversions can be exponential [3]. It is then natural to ask for some additional
criteria that can help to select putative scenarios. We are interested in scenarios
that do not break combinatorial structures, defined in terms of genomic seg-
ments, that are conserved in both chromosomes. Indeed, if two genomes share
a common feature, it is likely that their common ancestor did too, which makes
evolution scenarios that conserve this feature interesting.

In this work, the combinatorial structures that we consider are common inter-
vals [18, 12]. We give a characterization of a class of evolution scenarios between
two chromosomes that are both parsimonious and do not break any interval of
genomic segments that is common to the two chromosomes. We call this class
of scenarios commuting scenarios, and we describe a linear time algorithm to
decide if a commuting scenario exists, and compute it if it does exist.

Sections 2 and 3 present the basic concepts and definitions. In Section 4,
we discuss results on human, mouse and rat chromosomes X [10], highlighting
the role of common intervals in assessing the quality of evolution scenarios. The
main theoretical results are presented in Section 5.

J. Lagergren (Ed.): RECOMB 2004 Ws on Comparative Genomics, LNBI 3388, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Sèverine Bérard, Anne Bergeron, and Cedric Chauve

2 Rearrangement Scenarios

A signed permutation is a permutation on the set of integers {0, 1, 2, . . . , n} in
which each element has a sign, positive or negative. An inversion of an interval
of a signed permutation inverts the order of the elements of the interval, while
changing their signs. In the following, we will assume that genomes are modeled
by signed permutations, and that rearrangement operations are restricted to
inversions. A rearrangement scenario between two or more genomes is given by
an unrooted tree whose nodes are labeled by permutations and such that each
of the given genomes labels a leaf, and the permutations labeling two adjacent
nodes differ by one inversion.

The number of vertices of the tree is one more the number of rearrange-
ments of the scenario. A scenario with a minimum number of rearrangements
is called an optimal scenario. For example, given the three permutations G1 =
(1 2 3 4 5 6), G2 = (1 3 2 5 4 6), G3 = (1 5 2 4 3 6), two rearrangement
scenarios for G1, G2 and G3 are proposed in Fig. 1, each of them having 6
rearrangements.

�
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�
�

�
�

�

�G1 (1 2 3 4 5 6)

�(1 4 3 2 5 6)

�(1 4 5 2 3 6)

�(1 4 5 2 3 6)

�(1 5 4 2 3 6)

�G2 (1 3 2 5 4 6)

�G3 (1 5 2 4 3 6)

(a)

�
�

�
�

��

�
�

�
�G1 (1 2 3 4 5 6)

�(1 3 2 4 5 6)

�(1 3 2 4 5 6)

�(1 3 4 2 5 6)

�G3 (1 5 2 4 3 6)

�(1 3 2 4 5 6)

�G2 (1 3 2 5 4 6)

(b)

Fig. 1. Two rearrangement scenarios between permutations G1, G2 and G3.

With two permutations, there exist polynomial algorithms to compute an
optimal scenario [11, 13, 2, 16], but the problem becomes NP-hard for more than
two permutations [8], although good heuristics are available [14].

Usually, there is more than one optimal scenario, even with different tree
topologies. For example, Fig 1(b) gives an alternate scenario for genomes G1,
G2 and G3, that yields a different median, or common ancestor, for the three
species. Is one scenario “better” than the other? When dealing with real genomes,
only further insight from biology and evolution history will allow to completely
settle this question. However, we will show that tracking some combinatorial
structures along different scenarios can help to partially assess the quality of a
scenario. For example, using data from chromosomes X of the mouse, human and
rat [10], we were able to detect a major difference between two mouse assemblies
– a transposition of two blocks of more than 300k base pairs.

3 Common Intervals and Commuting Inversions

A point p · q in a permutation is defined by a pair of consecutive elements in the
permutation. When a point is of the form i · i +1, or −(i +1) · −i, it is called an
adjacency, otherwise it is called a breakpoint.
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An interval of a permutation is defined either by giving its endpoints, or by
giving the set of its (unsigned) elements {|pi|, . . . , |pj |}. A non-empty interval of
the identity permutation can also be specified by giving its first and last element,
such as [i..j], in which case it is then understood that all elements between i and
j belong to the interval.

The notion of common interval was studied among others in [12] in order to
model the fact that a group of genes can be rearranged in a genome but still
remain connected.

Definition 1. A common interval of two signed permutations P and Q is a set
of two or more integers that is an interval in both permutations.

For example, the common intervals of permutations G2 = (1 3 2 5 4 6) and
G3 = (1 5 2 4 3 6) are {2, 5}, {2, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6},
and {1, 2, 3, 4, 5, 6}.
Definition 2. Two distinct sets of integers A and B are said to commute if
they trivially intersect, that is, A ⊂ B, or B ⊂ A, or A ∩ B = ∅.

The above definition, together with the fact that both intervals and inversions
can be represented as sets of integers, is central in the links we establish between
inversions, commutation and conservation of intervals. Indeed, an inversion that
commutes with an interval does not change the composition of this interval,
while it may change the order of the elements within the interval.

Definition 3. The score of a scenario between two signed permutations P and
Q is the ratio of inversions that commute with all common intervals of P and Q
over the number of inversions in the scenario.

For example, each of the rearrangement scenarios of Fig. 1 induces three
scenarios with two permutations. The scores are given in Table 1, and show that
the second scenario is slightly better, in terms of conservation, than the first.

Table 1. Conservation scores of the two evolution scenarios of Fig. 1.

Scenario (a) Scenario (b)

G1 to G2 0/3 4/4

G1 to G3 2/5 2/4

G2 to G3 2/4 2/4

Total 4/12 8/12

Efficient computation of scores is based on the notion of irreducible intervals.
A common interval I between P and Q is an irreducible interval if there is an
adjacency of P contained in I, and I is the smallest common interval between P
and Q that contains this adjacency. For example, irreducible intervals between
G1 and G2 of Fig. 1 are: {1, 2, 3} (for adjacency 1 ·2), {2, 3} (for adjacency 2 ·3),
{2, 3, 4, 5} (for adjacency 3 · 4), {4, 5} (for adjacency 4 · 5), and {4, 5, 6} (for
adjacency 5 · 6). Any common interval is the union of a sequence of irreducible
intervals such that two consecutive intervals intersect. This implies:
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Proposition 1. An inversion breaks a common interval if and only if it breaks
an irreducible interval.

Since, there are at most n irreducible intervals between two signed permutations
of {1, 2, . . . , n}, and they can be identified in linear time [12], Proposition 1
implies that computing scores can be done efficiently.

4 Reconstructing the Ancestral Chromosome X

The scenario proposed in [10], that attempts to reconstruct a putative chromo-
some X for the common ancestor of man, mouse and rat, motivated our investi-
gations in conservation of common intervals. The data, based on the conservation
of synteny blocks, yields permutations on 16 integers for each species.

This scenario, displayed in Fig. 2, has a remarkable feature: there is a common
interval between the three species, {5, 6}, that is not conserved in the interme-
diate permutations!

Human 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 2 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 2 5 4 6 7 8 9 10 11 12 13 14 15 16

1 3 2 5 12 11 10 9 8 7 6 4 13 14 15 16

Median 1 3 9 10 11 12 5 2 8 7 6 4 13 14 15 16

Mouse 5 6 4 13 14 15 16 1 3 9 10 11 12 7 8 2

5 6 4 13 14 15 16 1 3 9 10 11 12 7 8 2

5 6 4 13 14 15 16 1 3 9 10 11 12 7 8 2

5 12 11 10 9 3 1 16 15 14 13 4 6 7 8 2

1 3 9 10 11 12 5 16 15 14 13 4 6 7 8 2

Median 1 3 9 10 11 12 5 2 8 7 6 4 13 14 15 16

Rat 13 4 5 6 12 8 7 2 1 3 9 10 11 14 15 16

13 4 6 5 12 8 7 2 1 3 9 10 11 14 15 16

13 4 6 7 8 12 5 2 1 3 9 10 11 14 15 16

13 4 6 7 8 2 5 12 1 3 9 10 11 14 15 16

13 4 6 7 8 2 5 12 11 10 9 3 1 14 15 16

Median 1 3 9 10 11 12 5 2 8 7 6 4 13 14 15 16

Fig. 2. The evolution scenario for human, mouse and rat X Chromosome of [10].

The first column of Table 2 gives the scores for the three corresponding
pairwise scenarios, which are very low, even as low as 2/10 in the scenario trans-
forming the rat chromosome X into the human chromosome X. The loss of the
common interval {5, 6} in the intermediate species clearly has a damaging effect
on the scores. It also induces three independent reconstructions of this interval
along the three branches that go from the median ancestor to the human, to the
mouse, and to the rat.
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In such a situation, it is possible to question several hypothesis of the model:
the parsimony assumption, the evolutionary model, that considers only inver-
sions, or, more simply, the data. Questioning the data was the easiest experiment,
since the positions of the blocks were available. We soon realized that the mouse
assembly used to construct the data, (assembly 30 of UCSD), differed from a
more recent version, (assembly 32 of UCSD) notably on the respective position
of synteny blocks 5 and 6, that are transposed1.

Using the same synteny blocks in the order given by assembly 32 of mouse,
and MGR we obtained an alternate scenario, with much better scores, as the
second column of Table 2 shows: the total score increased from 10/30 to 18/30.
Finally, we defined our own data set, that resulted in three permutations on 22
elements, as follows: we considered the genes of chromosome X in human (as-
sembly 35.1 of NCBI), mouse (assembly 33.1 of NCBI) and rat (assembly 2.1 of
NCBI), and we identified the genes common to the three genomes on the basis of
their functional annotation, by using both confirmed and predicted annotations.
The scenario we computed on this data set, described in Appendix A, is displayed
in Figure 3, and the corresponding scores in the third column of Table 2.

Human 14 12 13 15 4 3 2 5 6 16 11 10 17 18 19 9 8 7 1 20 21 22

14 12 13 15 2 3 4 5 6 16 11 10 17 18 19 9 8 7 1 20 21 22

14 12 13 15 2 3 4 5 6 10 11 16 17 18 19 9 8 7 1 20 21 22

14 12 13 15 2 3 4 5 6 10 11 16 17 18 19 9 8 7 1 20 21 22

14 12 13 15 2 3 4 5 6 10 11 16 17 18 19 9 8 7 1 20 21 22

14 13 12 15 2 3 4 5 6 10 11 16 17 18 19 9 8 7 1 20 21 22

14 13 12 15 2 3 4 5 6 10 11 16 17 18 19 9 8 7 1 20 21 22

14 13 12 15 7 8 9 19 18 17 16 11 10 6 5 4 3 2 1 20 21 22

14 13 12 15 10 11 16 17 18 19 9 8 7 6 5 4 3 2 1 20 21 22

14 13 12 11 10 15 16 17 18 19 9 8 7 6 5 4 3 2 1 20 21 22

14 13 12 11 10 15 16 17 18 19 9 8 7 6 5 4 3 2 1 20 21 22

Median 10 11 12 13 14 15 16 17 18 19 9 8 7 6 5 4 3 2 1 20 21 22

Mouse 13 10 12 11 8 9 19 18 17 16 15 14 7 22 21 20 1 2 3 4 5 6

13 10 12 11 8 9 19 18 17 16 15 14 7 22 21 20 1 2 3 4 5 6

13 10 12 11 8 9 19 18 17 16 15 14 7 22 21 20 1 2 3 4 5 6

13 10 12 11 8 9 19 18 17 16 15 14 7 6 5 4 3 2 1 20 21 22

13 10 12 11 14 15 16 17 18 19 9 8 7 6 5 4 3 2 1 20 21 22

10 13 12 11 14 15 16 17 18 19 9 8 7 6 5 4 3 2 1 20 21 22

10 11 12 13 14 15 16 17 18 19 9 8 7 6 5 4 3 2 1 20 21 22

Median 10 11 12 13 14 15 16 17 18 19 9 8 7 6 5 4 3 2 1 20 21 22

Rat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 20 21 22

Median 10 11 12 13 14 15 16 17 18 19 9 8 7 6 5 4 3 2 1 20 21 22

Fig. 3. The scenario from our 22 blocks data set.

The conservation score we proposed and illustrated in this section is a first
attempt to measure the conservation of combinatorial structure in evolution

1 The mouse assembly 33 of UCSD agrees with the positions given in assembly 32.
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Table 2. Conservation scores of the scenario presented in [10], of a new scenario using
the assembly 32 of the mouse, and of the scenario based on our gene blocks.

Mouse 30 Mouse 32 Mouse 32 + 22 blocks

Human to Mouse 4/10 8/10 15/18

Human to Rat 2/10 6/10 13/15

Rat to Mouse 4/10 4/10 5/11

Total 10/30 18/30 33/44

scenarios, but raises many interesting questions. For example, the possibility to
weight inversions that break common interval with respect to the position of the
corresponding edge in the tree, or with respect to the number of broken intervals,
should be considered. The interpretation of scores on permutations of different
sizes, as we have in our example, is another interesting question.

5 Perfect Scenarios

A perfect scenario is a scenario in which no inversion breaks a common interval.
The construction of perfect scenarios is discussed in [9], where the problem is
shown to be computationally difficult. Perfect scenarios always exist between two
permutations, but are not necessarily optimal. They can even be trivial when the
two permutations have few common intervals. For example, any scenario between
permutations (1 2 3 4) and (3 1 4 2) is perfect. However, permutations that
arise from genomic data of relatively close species share lots of common intervals,
and some rearrangement scenarios have striking features in terms of structure
conservation.

In this section, we study a class of perfect scenarios, called commuting sce-
narios, and we show that deciding the existence of optimal commuting scenario,
and constructing them, can be done in linear time.

5.1 Commuting Scenarios

Definition 4. Let r1, . . . , rk be a sequence of inversions that transforms a per-
mutation P into a permutation Q. The sequence r1, . . . , rk is a commuting sce-
nario if, for every i, j ∈ [1..k], the inversions ri and rj commute and are distinct.

A beautiful example of a commuting scenario, is given in [7] where a region
on human chromosome 17 (denoted by H below) is compared to a region on
mouse chromosome 11 (denoted by M). The resulting permutations are:

H = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19),
M = (7 8 6 5 4 3 1 2 10 9 11 12 13 16 15 14 17 18 19),

The mouse chromosome M can be obtained from chromosome H by the com-
muting scenario of Fig. 4, in which all the inversions are identified by underlining
the set of inverted integers. Note also that we choose to represent the scenario
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. 4. A commuting scenario transforming H into M .

by inversions applied to the identity permutation. This will be helpful in proving
and understanding properties of commuting scenarios.

The fact that one could simultaneously underline all inversions in Fig. 4
is a direct consequence of the fact that all inversions commute, and implies
the following lemma. This example highlights many properties of commuting
scenarios. For example, applying the inversion from the largest to the smallest
transforms H into M by always inverting segments of H composed of consecutive
integers. More important for us is the following lemma.

Lemma 1. Let S be an optimal commuting scenario between two permutations
P and Q. An interval I is a common interval of P and Q if and only if all
inversions of S commute with I.

Proof. First, it is immediate that if each inversion of S commute with I, then I
is a common interval between P and Q.

On the other hand, since S is a commuting scenario, one can first apply all
inversions that commute with I, which leads to a permutation P ′ in which I is
an interval. Let R be the set of remaining inversions, those that do not commute
with I. If all inversions in R are disjoint, there are at most two of them, and it
is easy to see that applying them to P ′ yields a permutation in which I is no
longer an interval.

Suppose R contains at least two non-disjoint intervals, and that these inter-
vals intersect I at its right extremity – the argument is completely symmetrical
if we consider the left extremity. Let r be the largest interval that intersect I at
its right extremity, s the second largest, and I ′ the non-empty set of elements of
I that are at the left of r. Since the scenario is optimal, s is strictly contained in
r. Therefore, r can be partitioned into disjoint intervals, u, s and v, such that u
is contained in I, v is disjoint from I, and at least one of u and v is non-empty.

Applying both r and s to P ′ exchange the intervals u and v, leaving s in
the middle. By the choice of r and s, this structure will remain unchanged for
the rest of the sorting procedure, except for possible inversions within s. Note
also that all elements of I ′ will remain to the left of r. If u is not empty, the
elements of s that are not in I will end up between I ′ and u. If v is not empty,
the elements of v will end up between I ′ and s ∩ I. Thus I is not an interval in
Q, and cannot be a common interval of P and Q. ��
Proposition 2. Optimal commuting scenarios between two permutations P and
Q conserve all common intervals of P and Q in all intermediate permutations.

Proof. This follows immediately from Lemma 1. ��
The scenario of Fig. 4 is also an optimal scenario. It is not true, in general,

that if an optimal commuting scenario exists, then all optimal scenarios are
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commuting. An example is again given by data from human and mouse. Consider
the first 8 segments of H and M : one can transform H into M with the sequence
of inversions of Fig. 5, that is an optimal scenario, but not a commuting one.

1 2 3 4 5 6 7 8

1 2 7 3 4 5 6 8

7 2 1 3 4 5 6 8

7 8 6 5 4 3 1 2

Fig. 5. A non commuting scenario transforming the first 8 segments of H into M .

Deciding whether an optimal commuting scenario exists is therefore not a
trivial question. We give, in the following section, a characterization of permu-
tations that admit optimal commuting scenarios.

5.2 Existence of Optimal Commuting Scenarios

The results of this section rely on many of the concepts that have been developed
around the sorting by inversion problem. The terminology and conventions we
follow are presented in [5].
Note. In this section we consider signed permutations of {0, 1, . . . , n} that start
with 0 and end with n.

A first remark is that, since an optimal commuting scenario does not break
any common interval by Proposition 2, such a scenario can only exist for permu-
tations that can be optimally sorted component by component. We first settle
the case of oriented components in Theorem 1 that relates three fundamental
types of intervals: common intervals, inversions of a commuting scenario, and
the elementary intervals of the sorting by inversion theory, that appear here as
the vertices of the overlap graph.

Theorem 1. Let C be an oriented component of a permutation. The three fol-
lowing statements are equivalent.

1. C can be sorted by an optimal commuting scenario.
2. The overlap graph of C is a tree.
3. C can be sorted by an optimal scenario in which each inversion is a common

interval.

Before proving Theorem 1, we establish some properties of overlap graphs.

Lemma 2. Any leaf of an overlap graph is an oriented interval, and a common
interval.

Proof. A leaf is an interval that overlaps only one other interval. Let m and
M be the minimal and maximal values of a non-empty interval Ip. Then Ip
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always overlaps both Im−1 and IM . If Ip is a leaf, we must have either p = M or
p = m− 1, implying in both cases that the interval is oriented, since it contains
exactly one of its extremities. If Ip is not a common interval, then |Ip| ≥ 2
and Ip does not contain all the integers between m and M . Let m′ and M ′ be,
respectively, the smallest and largest missing integers. Note that one can have
m′ = M ′. Then Ip overlaps Im′−1 and IM ′ , and therefore can not be a leaf. ��
Lemma 3. Erasing a leaf of an overlap graph that is a tree is always a sorting
inversion.

Proof. Erasing a leaf never disconnects a tree, and we only have to check that
the tree contains at least another oriented interval after the leaf has been erased.
If a leaf Iq overlaps Ip, and Ip is unoriented, then applying Iq orients Ip. If Ip

is oriented and is the only other leaf (i.e, the graph contains only two vertices
Ip and Iq), then Ip = Iq, and the component is sorted after erasing Iq. If Ip

is connected to exactly one other node, Ip would become an unoriented leaf in
the new tree, which is impossible by Lemma 2. Thus Ip is connected to at least
two other nodes, implying at least two other leaves, therefore two other oriented
intervals. ��
Proof (Theorem 1).

(1) =⇒ (2). Suppose that an oriented component can be sorted by an optimal
commuting scenario. We will show, by induction on the length of the scenario,
that it must be a tree. It is certainly true for scenarios of length 1, since the
overlap graph has two nodes. We will show that there always exists an inversion
r that does not contains any other inversion of the scenario, and that necessarily
creates an adjacency. Since r can be applied first, this implies that r is an
elementary interval and a leaf in the overlap graph, and the result follows by
induction. If all inversions are disjoint, then the leftmost certainly creates an
adjacency. Otherwise, let r be a smallest inversion, in terms of the number of
elements it inverts, included in another inversion, and s the smallest inversion
containing r. As the inclusion of r in s is strict, then r creates an adjacency
between one of its elements and an element of s not included in r.

(2) =⇒ (3). It follows immediately from Lemmas 2 and 3: erasing a leave
always yields a tree.

(3) =⇒ (1). Let S be a set of reversals that transforms permutation P into
perrmutation Q, and such that all inversions of S are common intervals of P
and Q. Apply to P a maximal subset R of commuting inversions from S yielding
permutation P ′. By Lemma 1, all common intervals of P and P ′ commute with
all inversions of R. Let R′ be the set of remaining inversions. If R′ is not empty,
there is at least one inversion s that is an interval of P ′, and that does not
commute with an inversion of R. Therefore, s cannot be an interval of P , and is
not a common interval of P and Q. ��

In order to have a characterization of all permutations that admits optimal
commuting scenarios, we must next deal with unoriented components. In this
case, one inversion is allowed to orient the component, but, as we saw in The-
orem 1, the overlap graph of the resulting component must be a tree, which
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restricts severely the structure of the overlap graph of the original unoriented
component: it must contain only one cycle. This imposes to unoriented compo-
nents the following reduced form2.

Theorem 2. An unoriented component admits an optimal commuting scenario
if and only if it can be reduced to a permutation of the form

(0 2k 2k − 1 . . . 3 2 1 2k + 1).

Proof. Let P be a positive permutation P with n breakpoints and one com-
ponent. If P can be optimally sorted with a commuting scenario S, then each
inversion of S can be applied first, and must create a permutation whose overlap
graph is a tree. We will show that the inversions of S are either single elements,
or all the elements of the interval [1..n − 1], implying that P is of the form
(0 n− 1 n− 2 . . . 3 2 1 n), and that the length of a commuting scenario is n.

Let r be an inversion of S, with minimum element m and maximum element
M , then applying r to P creates the oriented elementary intervals I ′m−1 and
I ′M , that are leaves of the resulting overlap graph. By Lemmas 1 and 2, those
intervals must commute with r, implying that r also commutes with Im−1 and
IM .

If r commutes with Im−1, then either m − 1 is immediately to the left of
interval r, or m is the first element of r. Similarly, if r commutes with IM , then
either M + 1 is immediately to the right of interval r, of M is the last element
of r.

If m is the first element of r, and M the last, interval r will be a component
unless m = M . This case produces the inversions consisting of a single element.
If m − 1 is immediately to the left of r, and M + 1 is immediately to the right,
then [m− 1..M + 1] is a component, thus m− 1 = 0, and M + 1 = n. This case
produces the inversion of the interval [1..n − 1].

Finally, if m − 1 is immediately to the left of r, and M the last element of
r, then [m − 1..M ] is a component, implying that M = n, which is impossible.
Similarly, M + 1 is immediately to the right of r, and m the first element of r,
implies m = 0, which is also impossible.

Applying all the possible n commuting inversions to the identity permutation
yields the permutation: (0 n− 1 n − 2 . . . 3 2 1 n). If n is odd, the inversion
distance is n, thus the permutation can be sorted by an optimal commuting
scenario. However, if n is even, the permutation has two cycles, and there exists
an optimal scenario of length n − 1. ��

5.3 Algorithm

We now have all the elements needed to construct a linear time algorithm that
will decide if a permutation P of size n can be sorted with an optimal commut-
ing scenario, and that will compute the necessary information to obtain such a
scenario, if it exists.
2 A component is reduced if all the smaller component contained in it have been sorted,

and all the resulting adjacencies collapsed into single elements [3].
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General overview. The overlap graph can be processed component by compo-
nent, and Theorem 2 addresses the case of unoriented components.

In the case of an oriented component, whose overlap graph C has k vertices,
the algorithm given in Fig. 6 decides, in linear time, if C can be sorted by a
commuting scenario. If such a scenario exists, the algorithm computes, in linear
time, the order in which the vertices of the overlap graph must be erased to
produce a commuting set of inversions.

1. Build iteratively the edges of C as long as there are at most k − 1.
2. If C has at least k edges, then C is not a tree.
3. Else, remove iteratively the leaves of C, which produces the sequence of inver-

sions necessary to sort C.

Fig. 6. Algorithm 1 (Main algorithm).

As one can see, the core of this algorithm is step 1., that ensures that one
can decide if the component can be sorted with a commuting scenario after
considering at most k edges. The last step, that produces the scenario, can
clearly be done in a single traversal of the overlap tree, and thus in O(k) time.
So we need to describe how we identify at most k edges of the overlap graph in
time O(k).

Computing edges of the overlap graph. Let (�i, ri) be the indices, respectively, of
the left point and right point of the elementary interval Ii of C. The first step is
to compute a sequence S of the 2k �i’s and ri’s in such a way that the following
property holds: two intervals Ip and Iq overlap if and only if in S �q appears
between �p and rp and rq appears after rp. This can be done in Θ(k) worst-case
time.

Once the sequence S is built, the following algorithm computes at most m
edges of the overlap graph during a single pass on S. One denotes by Si the ith

element of S and m the maximum number of edges one wants to produce.

1. Let i = 1.
// Invariant: there are only �q’s at the left of Si, and all of them have their
corresponding rq’s at the right of Si or at Si.

2. While i ≤ 2n and less than m edges have been computed do
3. If Si = rp for some p then

4. Let Sj = �p.
5. For every �q located between Sj and Si do add an edge (p, q).
6. Remove from S the elements �p and rp.

// This last step ensures the invariant still holds

Fig. 7. Algorithm 2 (Computing edges of the overlap graph).
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Using the appropriate data structures to encode S, such as a double-linked
list, one can implement this algorithm in order that instruction 6, that removes
elements of S, is done in Θ(1) time, and that instruction 5, that visits all elements
between �p and rp, is done in time proportional to the number of these elements.
The invariant ensures that the elements visited between �p and rp are exactly
the �q’s such that the corresponding rq’s are located after rp. This leads to the
following lemma:

Lemma 4. For every m, Algorithm 2 computes at most m edges of C in Θ(m+
k) worst-case time.

Theorem 3. It can be decided, in Θ(n) time and space, whether a signed per-
mutation P on n elements can be sorted by an optimal commuting scenario. If an
optimal commuting scenario exists, one can compute the corresponding sequence
of oriented inversions in Θ(n) time and space.

Proof. Given P , we can process it component by component. The case of unori-
ented components, that can be detected in Θ(n) time [4], has been addressed
in Theorem 2 and can be solved in Θ(n) time. Next, one needs to compute the
set of vertices of each component of the overlap graph, and this can be done in
linear time using [4, 1]. Then we apply Algorithm 1, where step 1 is done with
Algorithm 2, and step 3, if necessary, is done during a depth-first traversal of the
overlap graph of C where each leaf is processed – the corresponding inversion
is added to the scenario – during its first visit. Steps 1 and 3 take Θ(k) time
if the current component has k vertices, by definition of a depth-first traversal
and Lemma 4, which leads to a total Θ(n) time complexity to build the forest of
trees that composes the overlap graph and iteratively remove the leaves of this
forest. ��

6 Conclusion

We described in this paper a class of perfect scenarios, the commuting scenarios,
and we showed that one can decide in linear time whether a signed permuta-
tion can be sorted by an optimal commuting scenario. However since a perfect
scenario is not necessarily commuting, it is still an open question to decide in
polynomial time if a permutation can be sorted by an optimal perfect scenario.
It would also be interesting to have more information on how large is the class
of permutations that can be sorted by commuting scenarios. This would help in
assessing the significance of optimal commuting scenarios with respect to other
optimal scenarios. Here, we focused on optimal commuting scenarios, and the
class of non-optimal commuting scenarios should be investigated. Indeed, every
permutation can be sorted by a perfect scenario, but it is not true that every
permutation can be sorted by a commuting scenario. Finally, it should also be
noted that the best time complexity for computing an optimal scenario for a
general permutation is currently (n

√
n log(n)) [16]. Our algorithm is the first,

as far as we know, that achieves linear-time complexity for a non-trivial class of
signed permutations.
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Appendix A

The 22 gene blocks of the new human/mouse/rat scenario

We give here the list of the first gene of the 22 blocks of genes we used in
our study of the human/mouse/rat X chromosome evolution. The below table
has the following format: the first column gives the integers associated to the
22 genes we consider, the next three columns present the rat data (gene/locus
name, orientation and position) followed by three columns for the mouse and
three columns for the human (assembly 34.3 for the human genome, assembly
32.1 for the mouse genome and assembly 2.1 for the rat genome).

1 Birc4 - 3013140 Birc4 + 33413632 BIRC4 + 121691803

2 Syn1 + 12517799 Syn1 - 19413738 SYN1 - 46478245

3 Sytl5 - 24886677 Sytl5 - 8475502 SYTL5 + 36924044

4 Cybb - 25568041 Cybb - 7985479 CYBB + 36670221

5 Ebp + 26384668 Ebp - 6745931 EBP + 47426239

6 Gdf-9b - 29057402 Bmp15 - 4973481 BMP15 + 49570590

7 Pls3 - 29923507 Pls3 - 65568249 PLS3 + 113559762

8 Il13ra2 - 30559317 Il13ra2 - 135823846 IL13RA2 - 113002791

9 Dcx + 34649731 Dcx - 132129216 DCX - 109300978

10 Ragb - 38406475 LOC245670 + 141432864 RRAGB + 54711109

11 Pfkfb1 + 39892044 Pfkfb1 + 138292880 PFKFB1 - 53926381

12 LOC317435 + 42360000 APXL + 140920000 APXL - 9250000

13 Mid1 - 44805419 Mid1 + 157816113 MID1 - 9827653

14 LOC302711 + 63450000 Tbl1x + 67700000 Tbl1x + 8845000

15 Dmd + 71574635 Dmd + 73462214 DMD - 30498771

16 Maged1 - 82127336 Maged1 - 84274362 MAGED1 + 50553552

17 Arhgef9 - 82667648 Arhgef9 - 84771512 ARHGEF9 - 61721639

18 Slc16a2 - 91773989 Slc16a2 - 93602023 SLC16A2 + 72507876

19 Atrx - 93979545 Atrx - 95705534 ATRX - 75517065

20 Xpnpep2 + 134548393 Xpnpep2 + 39428571 XPNPEP2 + 127578549

21 LOC367956 + 147367900 Gm366 + 51313500 LDOC1 - 138963500

22 Fmr1 + 154829464 Fmr1 + 58282553 FMR1 + 145661196

This data set induces the three following permutations (repectively, from top
to bottom, for the rat, the mouse and the human), where the mouse chromosome
X is represented reversed, in order to correspond to the evolution scenario given
in Appendix C:

Rat = ( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 )
Mouse = ( 13 10 12 11 8 9 19 18 17 16 15 14 7 22 21 20 1 2 3 4 5 6 )

Human = ( 14 12 13 15 4 3 2 5 6 16 11 10 17 18 19 9 8 7 1 20 21 22 )
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Abstract. High-throughput DNA sequencing is now producing collec-
tions of genomes from moderately or closely related organisms. Such
a collection may be represented as a multiple alignment M of orthol-
ogous sequences, which induces a phylogenetic tree τ . Long-range ge-
nomic alignments with phylogenies have not yet found a prominent place
in BLAST-like similarity search algorithms, though using them directly
as databases can potentially yield more accurate and more informative
alignments.
This work describes how to construct local alignments between a query
and a multiple alignment in a way that explicitly uses a phylogenetic
tree τ . We give an EM algorithm to find a locally optimal alignment
when the location of the query on the tree τ is not known. An initial
implementation of the method is tested on a large multiple alignment of
sequences from eight vertebrate genomes.

1 Introduction

The advent of high-throughput DNA sequencing technology has enabled not
only broad sequencing, covering the genomes of diverse model organisms, but
also deep sequencing of multiple genomes within a clade of more closely re-
lated species. Deep sequencing is useful for recognizing common genomic features
across a set of organisms, for identifying genetic innovations unique to particu-
lar subgroups of the set, and more generally for reconstructing the organisms’
evolutionary history. Recent large-scale projects include sequencing of multiple
budding yeasts [1], Plasmodium species [2], and vertebrates [3].

As deep sequencing becomes a more common mode of genomic investiga-
tion, there is mounting pressure to develop computational methods that better
exploit collections of long homologous sequences. Much work to date [4–7] has
focused on preparing long-range multiple alignments of orthologous sequences
across species. Alignments produced by these methods are more than the sum of
their parts; in particular, they can provide valuable evidence about the rate and
topology of evolution in a group of species, in the form of inferred phylogenetic
trees.

Long-range genomic multiple alignments offer opportunities to integrate phy-
logenetic information into existing biosequence analysis problems. For example,
recent work in gene structure prediction [8, 9] has begun to exploit phylogenetic
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information explicitly to improve recognition of meaningful conservation. How-
ever, one opportunity that has not yet been systematically exploited is the use of
multiple alignments with phylogenetic information as databases to improve sim-
ilarity search tools such as BLAST [10, 11]. In particular, consider the following
problem:

Given a DNA query sequence q and a multiple alignment M of ortholo-
gous DNA sequences, with an induced phylogenetic tree τ , find all suf-
ficiently high-scoring local alignments between q and M .

This problem is well-posed, with the exception of a specification for how to score
local alignments between q and M . We expect that using M as the database
for search should lead to more accurate alignments, provided the evolutionary
model associated with M is accurate. Moreover, an alignment of q to M provides
information on where to place q on the phylogeny for M , which is helpful for,
e.g., recognizing the species that yielded q or for incrementally reconstructing a
history of paralogization for a gene family.

Statistical approaches to alignment and scoring that do not explicitly consider
the tree τ can be derived as special cases of the scores proposed by, e.g., Yona
and Levitt [12] and Wang and Stormo [13]. Alternatively, the alignment M can
be decomposed into its individual sequences, and multiple alignments can be
reconstructed iteratively from q and these sequences (again without reference
to τ) as in PSIBlast [11]. However, neither of these methods explicitly take
advantage of the information summarized in τ .

In this work, we formulate an explicitly phylogenetic method to perform
similarity search of a query sequence against a multiple sequence alignment. More
specifically, we describe how to extend an ungapped seed alignment between
query and database into a gapped local alignment, using the phylogeny as the
basis for scoring. Because the placement of q on the tree τ is uncertain, we give
an iterative algorithm to find a locally most likely local alignment of q to M . This
compute-intensive algorithm can be accelerated through caching of intermediate
results. We have built an initial software implementation of our method, which
we call PhyLAT, the Phylogenetic Local Alignment Tool.

The remainder of this work is organized as follows. Section 2 defines the prob-
ability model for alignments, formally states the phylogenetic gapped extension
problem, and briefly describes the generation of seed alignments for this prob-
lem. Section 3 presents an EM approach to derive a locally maximum-likelihood
local alignment of q to M from a given starting point. Section 4 details the pro-
cedure used to place q on the tree τ and describes how to accelerate this step
by caching intermediate results. Section 5 investigates the performance of our
method as implemented in PhyLAT. Finally, Section 6 concludes and identifies
key directions for improving the speed and accuracy of our implementation.

2 Definitions and Formal Problem Statement

2.1 Alignment Probability Model
A database M consists of a multiple alignment of n homologous DNA sequences.
Not all sequences need be present at all positions of M – the alignment may
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contain small gaps caused by local mutation or large gaps caused by larger-scale
block insertion, deletion, and rearrangement. The database M comes with an
inferred phylogenetic tree τ , whose n leaves are the individual sequences of M .
τ defines both a topology on these sequences and a set of branch lengths. We
assume that τ is rooted and binary; hence, τ has 2n − 2 branches ei, each with
a length �i. To convert these branch lengths to transition probabilities, we are
also given a mutation model consisting of a rate matrix Q and a stationary
distribution π for the residue frequencies in M .

A local alignment A between a DNA sequence q and the database M is a
partial correspondence between the residues of q and the columns of M . A aligns
some substring q′ of q to some interval M ′ of M , possibly inserting gaps in M ′

or q′. The probability of the data given an alignment A is, as usual, computed
under the assumption that aligned residues are homologous, while all others are
unrelated. More specifically, there exists an augmented tree τ∗, which consists of
the original τ plus one more branch leading to a leaf labeled with q, such that
the residues aligned by each column of A arise by common descent along τ∗.
The remaining positions of q are independent of M .

Assuming that the residues of q are stochastically independent, as are the
columns of M , we derive

Pr(q, M | A, τ∗) =
|A|∏
j=1

Pr(y[j], Z[j] | τ∗) ·
∏
y �∈q′

Pr(y)
∏

Z �∈M ′
Pr(Z | τ) . (1)

where yj and Zj (either of which may be a gap “−”) denote the parts of the
jth column of A drawn from q and M , respectively. As usual, the assumption of
independence is not biologically most appropriate but is consistent with normal
practice in pairwise alignment. The residues of q follow an i.i.d. model, while
each column of M is determined independently by common descent from τ .

In this work, we treat gaps in either q or M as first-class residues when
computing the probability of the data given A. The rate matrix Q is therefore
5 × 5, rather than the more common 4 × 4, to model insertion and deletion as
well as substitution. PhyLAT’s rate matrix Q is a time-reversible model similar
to the extended Tamura-Nei [14] model described in [15]. It is built from a set of
stationary frequencies and three free parameters, corresponding to instantaneous
rates of transitions, transversions, and indels.

Treating gaps the same as other residues is extremely convenient for phy-
logeny but has some disadvantages, notably a tendency to assign too large a
probability to alignments containing long gaps. To partially compensate for this
tendency, we extend the probability model of Equation (1) to implement an affine
penalty for new gaps introduced into M or q by our algorithm, as described in,
e.g., [16, Chapter 2]. However, a more balanced treatment of gaps in PhyLAT
remains a topic for future work.

2.2 Formulation of Alignment Problem
Suppose we have reason to believe that a high-scoring local alignment between q
and M exists between some substring q[a, b] of q and some interval M [c, d] of M .
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Fig. 1. The four possible trees created by augmenting a single tree τ on three leaves.
Each tree adds a single branch (shown by a dashed line) off one of the four existing
branches.

Typically, the window q[a, b]×M [c, d] is determined by finding a seed alignment
using an efficient hashing strategy [11, 17]. Our goal is to investigate whether
the proposed high-scoring alignment actually exists.

To score any given alignment of q to M , we need to know which augmented
tree τ∗ describes the relationship of q to the fixed tree τ on M . However, the
correct choice of τ∗ may be unknown and indeed may vary from one local align-
ment to the next. Allowing τ∗ to be unknown and variable permits lack of global
synteny between features in q and features in M and allows for the possibility
that a search tool user may have limited knowledge of how the query relates
to the contents of the database. To deal with ignorance of τ∗ when scoring A,
we can enumerate the 2n − 2 potential augmented topologies τ∗

1 . . . τ∗
2n−2, as

illustrated in Figure 1, and marginalize over the choice of unknown topology.
To summarize, PhyLAT’s extension of seed alignments must solve the fol-

lowing problem:

Problem 1. Let M be a multiple alignment on n sequences over an alphabet Σ,
with the sequences related by a phylogenetic tree τ with branch lengths, and
let q be a query sequence, also over Σ. Let τ∗

1 . . . τ∗
2n−2 be the 2n − 2 possible

augmented tree topologies connecting q to τ .
Find a local alignment A between M and q, restricted to some window q[a, b]×

M [c, d], that maximizes the probability

Pr(q, M | τ, A) =
∑

i

Pr(q, M, τ∗
i | τ, A) .

For compactness of notation, we generally drop the explicit dependence of
Pr(q, M | τ, A) on the fixed tree τ from now on.

2.3 Generation of Seed Alignments

Most existing approaches to seeded alignment work on pairs of sequences, rather
than a sequence and a multiple alignment. To use these methods without change,
PhyLAT applies them to q and αM , the most likely ancestral sequence given M
and τ . We use hashing-based seed generation followed by ungapped extension
with a scoring matrix from the DNA-PAM-TT family [18]. Seed alignments
that pass a given E-value threshold as determined by ungapped Karlin-Altschul
statistics [19] become candidates for gapped extension with the full phylogenetic
algorithm.
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The local window q[a, b] × M [c, d] in Problem (1) is centered on the seed
alignment. We restrict alignment to a band about the seed of fixed width w.
The length of the band is determined dynamically: starting with a small fixed
window size, we progressively double this size until doing so does not improve
the alignment score. Alignments are constrained to pass through the column of
M at the midpoint of the seed, so that expanding the window does not cause
PhyLAT to ignore the seed in favor of some unrelated high-scoring alignment.

3 EM Computation of Most Likely Local Alignment

In this section, we derive an algorithm for Problem 1 using expectation maxi-
mization [20]. The algorithm iteratively refines an initial guess A(0) at the align-
ment A while simultaneously inferring a distribution over the position of q rela-
tive to the tree τ . EM ensures that the final alignment is locally maximal in the
neighborhood of A(0).

We first define a set of 2n−2 indicator variables xi for the augmented topol-
ogy:

xi =
{

1 if augmented topology is τ∗
i

0 otherwise.

The mth iteration of the EM algorithm starts with a previous best local align-
ment A(m−1). In the E-step of the iteration, the algorithm computes for each xi

the expectation
x̂i = Pr(xi = 1 | q, M, A(m−1)) . (2)

In the M-step, the algorithm computes a new alignment A(m) to maximize the
sum ∑

i

x̂i log Pr(q, M | xi = 1, A(m)) . (3)

Each iteration of EM both increases the likelihood of A(m) given the data and
updates the estimated probabilities of the trees τ∗

i , until a locally maximal align-
ment and a final distribution over augmented trees is reached.

Relative to the standard formulation of EM, the known data, missing data,
and model parameters in this problem are respectively the sequence q and align-
ment M , the augmented tree selectors xi, and the alignment A of q to M .

3.1 Computation of E-Step

To compute x̂i, we apply Bayes’ theorem to Definition (2):

x̂i =
Pr(q, M | xi = 1, A(m−1)) Pr(xi = 1 | A(m−1))

Pr(q, M | A(m−1))
.

The first term of the numerator is given by Equation (1), while the second term
is independent of the actual data and may be viewed as the user’s prior over the
position of q on the tree. This prior may be taken as uninformative (uniform) or
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may be weighted based on available information. For example, if the user knows
that q comes from a mammal, then the position of q may be highly biased toward
a particular subtree of a tree on vertebrates. The denominator is independent of
i; rather than computing it explicitly, we observe that

∑
i x̂i = 1, since one of

the augmented topologies must be correct, and normalize accordingly.
To further simplify the E-step, we observe that, according to Equation (1),

the probability Pr(q, M | A(m−1), xi = 1) can be decomposed as

C ·
∏
j

Pr(yj , Zj | τ∗
i ) ,

where j runs over the positions of A(m−1) and C is a constant independent of i,
which can be normalized away along with the denominator. Hence, it is enough
to compute

x̂i ∝
⎛
⎝∏

j

Pr(yj , Zj | τ∗
i )

⎞
⎠Pr(xi = 1 | A) , (4)

which requires inspecting only the positions of the local alignment A(m−1). To
ensure adequate numerical precision with long alignments A, the product in (4)
should be computed in the log domain.

3.2 Computation of M-Step

We first observe that the alignment maximizing the sum (3) does not change if
we subtract from this sum the constant

C′ = log Pr(q) Pr(M | τ) =
∑

i

x̂i log Pr(q) Pr(M | τ) .

Again applying the definition in Equation (1) and canceling common terms, we
find that the M-step seeks an alignment that maximizes

∑
i

x̂i log Pr(q, M | xi = 1, A(m)) − C′ =
∑

i

x̂i

∑
j

log
Pr(yj , Zj | τ∗

i )
Pr(yj) Pr(Zj | τ)

=
∑

j

∑
i

x̂i log
Pr(yj , Zj | τ∗

i )
Pr(yj) Pr(Zj | τ)

.

where j runs over the positions of the alignment A(m).
To find a local alignment A(m) maximizing a sum of per-position scores, one

need only apply the standard Smith-Waterman algorithm [21] using an appro-
priate score function. In this case, we may define the score σ(y, Z) between a
residue y of q and a column Z of M as follows:

σ(y, Z) =
∑

i

x̂i log
Pr(y, Z | τ∗

i )
Pr(y) Pr(Z | τ)

.
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Fig. 2. The structure of tree τ∗
i , focusing on the branch ei of τ , which lies between

nodes a and c, and the new branch inserted at b, ending in the query residue y.

The scores σ(y, Z) need not be recomputed from scratch for each cell of the
dynamic programming matrix but can instead be computed for Zj and all y ∈ Σ
as each column Zj of M is first considered.

The EM algorithm requires a starting alignment A(0), which should be a
reasonable guess at the final alignment. We derive A(0) by applying the general
algorithm with a uniform distribution over the placement of q on τ , that is, with
x̂i = 1/(2n− 2).

4 Computation of Per-column Probabilities

We now turn to the problem of computing the probabilities Pr(y, Z | τ∗
i ), where

y is a residue of q, Z a column of M , and τ∗
i an augmented tree topology.

These probabilities or their logs are needed in both the E- and M-steps of EM,
potentially for |Σ|n different values of Z and 2n−2 different trees τ∗

i . If phyloge-
netically aware similarity search in large sequences is to be practically efficient,
these probabilities must be computed as quickly as possible. Moreover, full spec-
ification of these probabilities reveals another piece of unknown information – a
pair of branch lengths – that must be estimated from the data.

4.1 The Basic Computation

We wish to compute Pr(y, Z | τ∗
i ), where the topology τ∗

i appends the new
branch leading to the query q from a branch ei of τ with length �i. The postulated
tree structure is shown in simplified form in Figure 2. Branch ei divides τ into
two subtrees whose roots are its endpoints. Let a and c be the roots of these two
subtrees, and let Za and Zc be the subsets of Z labeling their respective leaves.
The new branch leading to the query residue y branches off ei at some point; let
b be the ancestral residue at this point. From this point to the end of Section 4.2,
we focus on a particular choice of topology τ∗

i and so drop dependence on τ∗
i

from our notation until Section 4.3.
Applying the conditional independence relations implied by the structure in

the figure, we may derive
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Pr(y, Z) =
∑
a,b,c

Pr(y, Z, a, b, c)

=
∑
a,b,c

Pr(Z, a, c) Pr(y, b | Z, a, c)

=
∑
a,b,c

Pr(Za, a) Pr(Zc, c | a) Pr(y, b | a, c)

=
∑
a,b,c

Pr(Za | a) Pr(a) Pr(Zc | c) Pr(c | a) Pr(y | b) Pr(b | a, c) .

Applying Bayes’ theorem to Pr(b | a, c) and performing a little algebra, we are
left with

Pr(y, Z) =
∑
a,c

Pr(Za | a) Pr(Zc | c)
∑

b

Pr(b) Pr(y | b) Pr(a | b) Pr(c | b) .

The two terms in the outer sum, which depend on Z, can be computed given only
the topology and branch lengths of τ . Inside the inner sum, we must apply our
residue evolutionary model to the augmented tree. Pr(b) = π(b), the stationary
probability of b. For the other three probabilities, we must introduce two new
branch lengths, �0 and �1, as shown in Figure 2. �0 is the distance along ei from
a to the branch point b, while �1 is the length of the new branch leading to y.

Let f�(p | q) be the probability, according to the mutation rate matrix Q,
that residue q mutates into residue p along a branch of length �. Then we may
write

Pr(y, Z) =
∑
a,c

Pr(Za | a) Pr(Zc | c)
∑

b

π(b)f�1(y | b)f�0(a | b)f�i−�0(c | b) . (5)

4.2 Estimating the Branch Lengths �0 and �1

The branch lengths �0 and �1 are unknown but must be supplied to compute
Pr(y, Z). We therefore compute maximum-likelihood estimates for �0 and �1

given the current alignment A between q and M . That is, we choose these lengths
to maximize

L(�0, �1 | A) =
∏

(y,Z)∈A

Pr(y, Z | �0, �1) ,

where each term of the product is given by Equation (5). Note that �1 is con-
strained to lie in the range [0, �i], while �0 is merely non-negative. As usual, the
demands of numerical precision lead us to maximize the log of the likelihood L
rather than L itself.

The optimal choice of branch lengths depends on the rate matrix Q. For
all but the simplest Q, analytic determination of the optimal lengths appears
difficult. We therefore maximize the log likelihood numerically using an imple-
mentation [22] of a bound-constrained quasi-Newton method. An important part
of this process is the computation from Q of the transition probabilities f�(p | q)
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for a branch length � and a pair of residues p, q. We use the fact [23] that f�(p | q)
can be expressed as a sum

f�(p | q) =
|Σ|∑

m=1

UqmU−1
mpe

λm� ,

where Q = UΛU−1 is the spectral decomposition of the rate matrix Q, with λm =
Λ[m, m] being its mth eigenvalue. The derivative df�(p|q)

d� is easily computed from
this formula, which allows us to supply an analytic gradient ∇ · log L(�0, �1 | A)
to the optimizer.

To compute the initial alignment A(0) for EM, we arbitrarily set �0 = �i/2
and �1 = 0.1 for all edges ei of τ .

4.3 Caching to Accelerate Probability Computation

High-throughput use of phylogeny in sequence alignment requires numerous eval-
uations of the probability Pr(y, Z | τ∗

i ) for various augmented tree topologies τ∗
i .

To speed these computations, we now consider how to partially precompute the
necessary probabilities. Although the probabilities depend on branch lengths �0

and �1 for each τ∗
i , which must be recomputed in every E-step, some of the work

necessary to compute these probabilities can be done either offline or once per
update of the branch lengths.

In the expression for Pr(y, Z | τ∗
i ) in Equation (5), each term of the outer

sum over a, c is divided into three components: Pr(Za | a), Pr(Zc | c), and the
inner summation over b. The latter sum depends on �0 and �1, but once these
are known, it can be computed for all triples y, a, c in time Θ(|Σ|4) per branch
and stored in a table of size |Σ|3. Each of the other two components, of the form
Pr(Zq | q), can be precomputed from the original tree τ and stored in a table of
dimension |Σ|×|Σ||Zq|. These tables can be computed and stored offline because
they do not depend on the query.

Once all three components have been precomputed, Pr(y, Z | τ∗
i ) requires

only Θ(|Σ|2) operations to sum over the ancestral residues a, c at either end
of edge ei. Hence, the score σ(y, Z) can be computed in time Θ(n|Σ|2). If we
compute σ(y, Z) for all y when the M-step first encounters a column Z of M ,
then the added cost to alignment is limited to Θ(n|Σ|3) per column, regardless
of the bandwidth used or the query size.

A potential problem with the above precomputation strategy is the large
space requirement of the tables for the probabilities Pr(Zq | q). The number of
leaves Zq behind an internal node q can be as large as n− 1, making the worst-
case size of this table Θ(|Σ|n) and the total space cost for all tables O(n|Σ|n).
Moreover, this upper bound is tight because the n edges leading to leaves of τ
each separate a leaf from a subtree with n − 1 leaves.

To address the space usage of precomputation for larger n, we now show how
to reduce this space to O(n|Σ|2n/3+2) while increasing the cost of computing
Pr(y, Z) by only a factor of |Σ|. Consider the tree of Figure 3, rooted at an
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Fig. 3. Dividing a tree into two leaf sets Z0 and Z − Z0 around an internal node a′.

ancestral node a with a set Z of k leaves. Starting from a, walk down the tree,
each time picking the side with more leaves, until we reach a node a′ with at most
2k/3 leaves below it. Let Z0 be the set of leaves below a′, and let Z1 = Z−Z0. The
parent b of a′ has more than 2k/3 leaves below it, and a′ roots the larger of b’s two
subtrees, so we have that k/3 < |Z0| ≤ 2k/3, and hence that k/3 ≤ |Z1| < 2k/3.

Observe that

Pr(Z | a) =
∑
a′

Pr(a′ | a) Pr(Z1 | a, a′) Pr(Z0 | a′) .

The three terms of this sum can be precomputed using tables of sizes |Σ|2,
|Σ||Z1|+2, and |Σ||Z0|+1, respectively. Moreover, we have that |Z0| ≤ 2k/3 and
|Z1| < 2k/3, so the largest table size is at most |Σ|2k/3+2. Given the three tables,
the sum itself can be computed for any a and Z in time Θ(|Σ|).

Again, the largest table stored at any node of τ is for a subtree with n − 1
leaves, and this size is achieved for n nodes, so the total space cost is
O(n|Σ|2n/3+2). For certain tree topologies, the space cost may be as little as
O(n|Σ|n/2+2). More complex recursive applications of the above splitting pro-
cedure can trade off further exponential decreases in the size of stored tables for
polynomial increases in online computation cost.

4.4 Missing Sequence Data

Short gaps in a multiple sequence alignment can be modeled as arising from a
process of localized residue insertion and deletion, which can be incorporated
into the mutation rate matrix Q. However, long-range genomic multiple align-
ments often contain large gaps caused by rearrangements or block insertions and
deletions. Because these gaps do not arise from the local process modeled by the
rate matrix, it seems wise to treat them separately. We therefore treat gaps in
the sequences of M above a threshold length θ as missing data.

When aligning a query q to a region of M with missing sequences, we wish
to consider only the non-missing subset of M and its induced subtree of τ in
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the alignment algorithm. In the limiting case that M contains only one non-
missing sequence, the alignment problem reduces to simple pairwise sequence
alignment. However, storing multiple induced subtrees, with all their scoring
information, requires an infeasible amount of space. Instead, we treat missing
positions uniformly by adding a missing symbol “*” to the list of symbols that
can label the leaves of τ .

The defining property of the missing symbol is that Pr(∗) = Pr(∗ | a) = 1.
For the simplest rooted tree consisting of an ancestral node a and two leaves, it
follows that

Pr(∗, y | a) = Pr(y | a)
Pr(∗, ∗ | a) = 1
Pr(a | ∗, ∗) = π(a) .

For more complex trees, setting some subset of the leaves to the missing symbol
effectively removes those species from computations on the tree. We may extend
the precomputed tables for Pr(Zq | q) to allow some subset of Zq to be missing,
which effectively increases the alphabet size for these tables by one. However,
the missing symbol is not a full-fledged alphabet character and is not used other
than to index the precomputed tables.

A similar approach to uniform treatment of missing residues is mentioned
briefly in [24].

5 Results

We have implemented PhyLAT in the C++ language, using the OPT++ op-
timization library [22] to estimate parameters �0 and �1 for each edge in the
E-step of the algorithm. In this section, we report initial performance tests us-
ing PhyLAT to align query sequences to orthologous regions in an alignment of
fragments from eight vertebrate genomes.

5.1 Data Set and Parameterization

We tested PhyLAT on the “Zoo” set of vertebrate genomic sequences from the
CFTR locus, which was obtained by Thomas et al. [3]. A multiple alignment
of these sequences produced by MAVID [6] was obtained from NCBI, along
with an induced tree labeled with branch lengths. From this alignment, we ex-
tracted a subalignment of eight organisms: chicken, mouse, rat, baboon, human,
dog, cat, and cow. This subalignment spanned 4.4 million columns. From the
same alignment, we extracted the individual sequences from pig and chimp,
of lengths 1.15 and 1.45 megabases respectively after removing gaps. We first
masked the low-complexity and repetitive elements in these two sequences using
RepeatMasker [25]. We then sought high-scoring local alignments between these
sequences and the multiple alignment.

We parameterized PhyLAT’s evolutionary model for this test to match the
observed properties of the multiple alignment. Gaps longer than θ = 21 residues
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were first converted to missing data as described in Section 4.4. Stationary fre-
quencies of the four nucleotides and the gap character were then inferred directly
from their frequencies in the alignment. The remaining three rate parameters of
the model were chosen to maximize the likelihood of the alignment given the
tree, branch lengths, and stationary frequencies and were scaled to yield a total
rate of one accepted mutation per unit of branch length.

Ungapped seed alignments between each query and the ancestral sequence
αM were used only if their score under the DNA-PAM-TT-50 scoring matrix
corresponded to a Karlin-Altschul E-value of at most 10−5. In gapped extension,
we used a bandwidth w = 101 and gap penalties of 12 bits to open and 2 bits
to extend, as suggested for pairwise alignment in [16].

5.2 Accuracy: Assessment of Tree Placement

Because the accuracy of the detailed alignment of each query sequence to the
multiple alignment is difficult to assess, we sought alternate evidence of Phy-
LAT’s accuracy that admitted easier assessment. Assuming that the original
MAVID alignment of the Zoo data is broadly correct, a large majority of hits
between the repeat-masked query q and the multiple alignment M should repre-
sent orthologous sequences, for which the species tree gives the correct placement
of q on the tree τ for M . We therefore assessed how often PhyLAT’s local align-
ments placed a query sequence on or near the expected edge of τ given the
query’s species.

For each of the two query species, we first identified those seed alignments
likely to represent matches of the query to an orthologous region of the multiple
alignment. Specifically, we sorted all seed alignments produced for each query
by their starting positions in q, then retained only the subset of seed align-
ments whose starting positions in M formed a longest increasing subsequence.
This procedure eliminated 5.1% of seed alignments to pig and 10.8% of seed
alignments to chimp, leaving 1348 and 2705 alignments, respectively. Each seed
alignment was then subjected to gapped extension against M , yielding 1132 and
2198 unique gapped alignments for pig and chimp, respectively.

Figure 4 shows the tree for M . The correct edges for the pig and chimp se-
quences are respectively those leading to the leaves labeled “cow” and “human.”
Among PhyLAT’s alignments, 814/1132 (71.9%) for pig and 2068/2198 (94.1%)
for chimp placed their queries on the correct tree edge for their species. More-
over, define an almost correct edge to be one that is either correct or shares an
endpoint with the correct edge. By this definition, 1004/1132 (88.7%) alignments
for pig and 2183/2198 (99.3%) alignments for chimp placed their queries on an
almost correct edge.

It should be noted that, for this alignment M , PhyLAT typically had many
fewer than eight sequences to help it place the query on the tree. The average
number of species present at any point in M is only 2.5, so the majority of species
may be expected to be absent at any given locus. However, not all species are
missing equally often, and not all are equally helpful in aligning queries. In
particular, if we consider the nearest neighbors of the two query species (cow
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Rat Human CatChicken Mouse Baboon CowDog

Fig. 4. Topology of the multiple alignment used for validation of PhyLAT. Branch
lengths are not to scale.

for pig, human for chimp), we find that human sequence is present at 42% of
positions, while cow is present at only 34%. This difference in coverage, as well
as the smaller evolutionary distance for chimp-human vs pig-cow, likely explains
the observed difference in performance on the two query species.

5.3 Efficiency

We tested PhyLAT on a 2.5 GHz Intel Pentium 4 workstation. The times to
perform gapped extension for the seed alignments inspected for pig and chimp
were 472s and 1290s, respectively. Time to generate the seed alignments was
comparatively negligible. Running time was divided roughly 3:1 between the M-
step and the E-step computations. For the M-step, about 40% of time was spent
executing Smith-Waterman, while the remaining 60% was spent match comput-
ing scores for each column of M used in alignment. For the E-step, almost all
time was spent in evaluating augmented tree likelihoods (and their derivatives)
for various choices of ei, �0, and �1 in the optimizer.

We note that most of the time spent computing probabilities was consumed
performing table lookups and multiplications to reconstruct them from the pre-
computed intermediates described in Section 4.3.

6 Conclusions and Open Problems

We have described a probabilistic model and algorithm for obtaining and scoring
local alignments between a query sequence q and a genomic multiple alignment
M . The scoring scheme explicitly incorporates information from a phylogenetic
tree on M , while the alignment algorithm is motivated by finding the most
likely alignment given uncertainty about the position of q on this tree. We ad-
dress the need for precomputation to accelerate the algorithm while maintaining
reasonable storage requirements. An initial implementation of our method in the
PhyLAT search tool shows promise for accurately reconstructing the relationship
of q to M .

Several challenges remain to make PhyLAT robust enough for production
use. A first important issue is the treatment of gaps and, more generally, the
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evolutionary model associated with τ . Our current treatment of gaps was chosen
for computational convenience but is limited in its ability to model gaps of
different lengths accurately. Placing gaps correctly in a multiple alignment is
still not a solved problem, so a more accurate gap model may be substantially
more costly in practice. We can improve our scoring of gaps and other columns
somewhat by using a context-dependent rate matrix as described in [24]. Such a
model would necessitate considerably larger cached tables, which would require
aggressive application of table splitting.

The multiple alignment M , while it likely has a single consistent tree topology
τ , need not have a single globally correct set of branch lengths. This concern
could be addressed by segmenting M into regions with relatively constant branch
lengths. The number of different regions must be limited to avoid untenable
storage costs for precomputed probabilities, but at least 5-10 types of region, each
with different branch lengths, would likely be feasible for alignments of about
ten species. Additional complexities arise if a single alignment spans multiple
regions.

Although we have generated scores for our alignments, we have not yet de-
vised a mechanism for measuring their statistical significance. Because the align-
ment algorithm used is essentially Smith-Waterman, we may hope that Karlin-
Altschul theory [19] will enable us to convert ungapped alignment scores into
more customary E-values, and that gapped extension will follow a similar ex-
treme value distribution that can be estimated empirically.

Finally, an important open problem is how to proceed when the query is not a
single sequence but is itself an alignment of two or more sequences. The number
of possible augmented tree topologies undergoes combinatorial explosion with
multiple query sequences, so explicitly enumerating them is likely infeasible.
More efficient methods will be needed to find good hypotheses for combining
complex tree topologies.
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Abstract. We have developed a multiple genome alignment algorithm
by using a sequence clustering algorithm to combine local pairwise
genome sequence matches produced by pairwise genome alignments, e.g,
BLASTZ. Sequence clustering algorithms often generate clusters of se-
quences such that there exists a common shared region among all se-
quences in each cluster. To use a sequence clustering algorithm for genome
alignment, it is necessary to handle numerous local alignments between
a pair of genomes. We propose a multiple genome alignment method
that converts the multiple genome alignment problem to the sequence
clustering problem. This method does not need to make a guide tree
to determine the order of multiple alignment, and it accurately detects
multiple homologous regions. As a result, our multiple genome align-
ment algorithm performs competitively over existing algorithms. This is
shown using an experiment which compares the performance of TBA,
MultiPipMaker (MPM) and our algorithm in aligning 12 groups of 56
microbial genomes and by evaluating the number of common COGs de-
tected.

1 Introduction

Recent advances in both sequencing technology and algorithm development for
genome sequence software have made it possible to determine the sequence of a
whole genome. As a consequence, the number of completely sequenced genomes
is increasing rapidly. However, algorithm development for genome annotation
has been relatively slow, and the annotation of completely sequenced genomes
inevitably depends on human expert knowledge. The most effective method to
understand genome content is to compare multiple genomes, especially when
they are close enough to share common subsequences. One important compu-
tational method is to align whole genome. Aligning whole genomes is useful in
several ways. For example, sequencing a genome can be much easier and more
accurate by aligning its contigs to completely sequenced genomes that are close
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to the one being sequenced. Another example of use of whole genome align-
ment is to identify conserved regions among multiple genomes which include not
only common genes but regulatory regions and non-coding RNA sequences. A
recent paper demonstrated that intergenic functional regions in multiple Yeast
strains can be detected by comparing the whole genomic sequences [1]. Work
on comparing human and mouse sequences has also demonstrated the possibil-
ity of predicting functions and structures of human genes by genome alignment
methods, e.g., [2, 3].

The dynamic programming algorithms, such as Needleman-Wunsch [4] and
Smith-Waterman [5], can be extended to align optimal alignment of multiple se-
quences, e.g., MSA [6]. However, computing optimal alignments for long genomic
sequences is not practical in terms of computation time and memory require-
ment; assuming N sequences of equal length L, time complexity is O(2N LN) and
the space complexity is O(LN ). Thus heuristic approaches, such as progressive
and iterative alignments, are widely used.

The progressive alignment (1) aligns all pairs of sequences by a fast anchor-
based alignment approach or a slow full dynamic programming method like
Needleman-Wunsch algorithm, (2) produces a guide tree via distance matrix
using the pairwise alignment scores, and (3) aligns the sequences sequentially
guided by the phylogenetic relationships indicated by the tree. The major prob-
lem with progressive alignment programs such as CLUSTALW [7] and PILEUP
in GCG Wisconsin Package is that the order of progressive alignment is deter-
mined and fixed by the initial pairwise alignments. To overcome this problem,
some iterative alignment methods make initial alignments for groups of sequences
and then revise the alignments to compute a more accurate result by various ap-
proaches [8–11].

Unlike the progressive and iterative alignment strategy, chaining alignment
strategy aligns multiple sequences without making guide tree. This method is
based on chaining all pairwise local alignments or multiple local alignments.
MGA [12] first finds multiMEMs, maximal exact matches occurring in multiple
genomes, as anchors and then calculates the optimal chain for multiMEMs by
using graph or range tree. DIALIGN [13] aligns pairs of sequences to locate
aligned regions that do not include gaps, that is, continuous diagonals in a dot
matrix plot. A consistent collection of weighted diagonals is then computed, and
diagonals with maximal sum of weights are generated as alignments.

As more whole genome sequences become available, there has been growing
need for computational methods for aligning multiple whole genomes. MLA-
GAN [14] aligns genomic sequences in progressive alignment phases with LA-
GAN and optimal iterative improvement phases. MAVID [15] uses a progressive
alignment approach to incorporate the following ideas: maximum likelihood in-
ference of ancestral sequences, automatic guide tree construction, protein-based
anchoring of ab-initio gene predictions, and constraints derived from a global
homology map of the sequences. TBA [16] builds a threaded blockset under the
assumption that all matching segments occur in the same order and orientation
in given sequences; inversions and duplications are not addressed. TBA is shown
to generate very high quality multiple genome alignments that verified with their
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rigorous column-by-column comparing evaluation method. MultiPipMaker [17]
aligns a reference sequence individually with each secondary sequence, prepares
a crude multiple alignment from the pairwise alignments, removes overlaps in the
local pairwise alignments, and refines the crude multiple alignment to generate
a true multiple alignment using rigorously defined multiple alignment scores.

1.1 Motivation

As we discussed, a heuristic alignment approach is the most widely used tech-
nique for multiple sequence alignment. However, the following reasons make it
difficult to use heuristic alignment strategy for the multiple genome alignment
problem.

1. It is hard to utilize the guide tree since there are many local regions where
their phylogenetic relationships are different from those of the “entire”
genome. Even duplications of a gene within a genome have their own phylo-
genetic relationship.

2. The greedy progressive alignment works due to the guide tree. Given that
the utilization of a guide tree is not trivial for genome alignment as discussed
above, the greedy progressive alignment strategy should be avoided.

3. The iterative alignment requires generation of profiles – alignment of multi-
ple sequences – while combining pairwise matches. Generating and aligning
profiles for long genome sequences is not practical.

An alternative to the progressive alignment method is to compute subse-
quences common to all genomes being aligned and chain them together to gener-
ate multiple sequence alignment. For example, MGA [12] computes multiMEMs
common in all genomes being aligned. MEMs in multiple genomes are natu-
rally short in length and thus it is necessary to chain them to generate multiple
sequence alignments. Although MGA was successful in generating “global” align-
ments of closely related genomes, it is not effective to compute alignments for
relatively distant genomes. One way to circumvent the difficulty is to use di-
rectly pairwise genome alignments which are already extended matches between
a genome pair. Thus some algorithms such as TBA [16] and MultiPipMaker [17]
are designed to combine pairwise matches for the multiple genome alignment
problem.

We have developed a multiple genome alignment algorithm by using a se-
quence clustering algorithm [18] to combine pairwise matches. Sequence cluster-
ing algorithms generate clusters of sequences that are candidates for sequence
families. These clusters are often generated to have common shared regions
among all sequences in each cluster, and these shared regions are used to predict
sequence domains. We argue that sequence clustering algorithms can be used
to generate multiple genome alignments by combining pairwise genome matches
since sequence clustering algorithms often require all pairwise alignments of the
input sequence set and combine pairwise matches to generate sequence clusters.
The genome alignment problem, however, is different from the sequence clus-
tering problem in terms of the number of input sequences and the number of



Multiple Genome Alignment by Clustering Pairwise Matches 33

s1

s2

s4
s6

s7

s8

s9

s5

s3

Fig. 1. Biconnected components and articulation point. There are two biconnected
components, {s1, s2, s3, s4, s5} and {s5, s6, s7, s8, s9}. The vertex s5 is an articulation
point since removing the vertex results in splitting the graph.

alignments between sequences. The number of genomes to be aligned is much
smaller than that of sequences to be clustered. In addition, there are numerous
local alignments between a pair of genomes while one or only a few aligned re-
gions exist between a pair of (protein) sequences. The basic idea of this paper
is to transform the genome alignment problem to the sequence clustering prob-
lem, which will be tackled by our sequence clustering algorithm BAG [18]. Thus
we explain briefly how BAG works in the next section and we describe how to
transform the genome alignment problem to the sequence clustering problem by
generating subsequences in Section 2.2.

2 A Sequence Clustering Algorithm and the Generation
of Input Data from Pairwise Matches

2.1 BAG Sequence Clustering Algorithm

Let us first review some definition of graph. A connected component of a graph
G is a subgraph where any two vertices in the subgraph are reachable from each
other. An articulation point of G is a vertex whose removal disconnects G. For
example, in Fig. 1, the removal of a vertex s5 disconnects G. A biconnected graph
is a graph where there are at least two disjoint edge paths for any pair of vertices.
A biconnected component of G is a maximal biconnected subgraph. In Fig. 1,
a subgraph G1 induced by vertices {s2, s3, s4} is a biconnected graph but it is
not a biconnected component since another subgraph G2 induced by vertices
{s1, s2, s3, s4, s5} is biconnected and G1 is a subgraph of G2. There are two
biconnected components, {s1, s2, s3, s4, s5} and {s5, s6, s7, s8, s9} of G in Fig. 1.

For a given set of (protein) sequences {s1, s2, ..., sn}, a weighted graph G can
be built from all pairwise comparison results by using FASTA and BLAST. A
node is created for each sequence si and an edge between two sequences, si and
sj , is created when the pairwise alignment score of si and sj is more signifi-
cant than a preset threshold. The alignment score is associated with the edge
as weight so that clusters can be refined while increasing cutoff for edges. Then
our sequence clustering algorithm BAG will be used for multiple genome align-
ment later in this paper. BAG explicitly uses two graph properties: biconnected
components and articulation points (see Fig. 1). We argue that a biconnected
component (BCC in short) is a candidate for a family of sequences because bi-
connected graph requires at least two disjoint edge paths between every pair of
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while (there are multiple components) {
remove edges by increasing cutoff;
compute bioconnected components;

}

Fig. 2. Illustration of the splitting step. For any biconnected component that failed for
RANGE-TEST, a cutoff score is increased until it can be split into multiple biconnected
components.

nodes in the graph and requires a much stronger condition than single linkage.
We also argue that an articulation point is a candidate for a multidomain protein
since it is the only vertex that connects two or more biconnected components,
i.e., multiple families. According to the graph properties mentioned previously,
we named our algorithm as BAG which stands for Biconnected components and
Articulation point based Grouping of sequences.

For a given set of sequences {s1, s2, ..., sn}, BAG recursively computes the
biconnected components with an increased cutoff score at each iteration. Our
algorithm BAG works as follows:

1. Build a weighted graph G from all pairwise comparison results where a node
is created for each sequence si and an edge between two sequences, si and sj ,
is created when the pairwise alignment score of si and sj is more significant
than a preset threshold. The alignment score is associated with the edge as
weight so that clusters can be refined while increasing cutoff for edges.

2. Select a cutoff score Tc, remove edges with weight smaller than Tc, and
generate biconnected components, G1, G2, ..., Gn, with a set of articulation
points {a1, a2, ..., am}. See [18] for the detail how to select this cutoff score.

3. Perform RANGE-TEST for each biconnected component Gi to determine
whether all sequences in Gi have common shared regions. If Gi fails RANGE-
TEST, split Gi iteratively and recursively into multiple clusters {Gi1 , ..., Gil

}
until every biconnected component Gij passes the RANGE-TEST as increas-
ing the cutoff score by δ 1. Note that increasing the cutoff score will remove
some edges and the resulting graph can be split into multiple biconnected
components at a certain cutoff. This step is illustrated in Fig. 2.

1 While increasing the cutoff score, we have several competing cutoff values that could
generate different clustering result. In the past, we selected the first cutoff that splits
Gi into multiple clusters. We recently developed a better method, called Cluster
Utility to select the best one among different cutoff choices. See [19] for more detail.
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Fig. 3. Difficulty in generating subsequences from pairwise alignments. In G1, there are
two alignments at similar positions, one with G2 and another with G3. One straightfor-
ward way to name subsequences is to assign a name with starting positions of alignment
in each genome. For G1, we would generate two subsequences G1:1000 and G1:1090.
However, these two subsequences correspond to the same homologous region and it is
difficult to match them. In addition, this result in generating numerous subsequences
when there are multiple genomes; in the worst case, the number of subsequences of a
genome can be the length of the genome.

4. After iterative splitting is done (step 2 and 3), clusters are considered for
merging. Each articulation point is tested for having common shared regions
with its neighbors in different clusters; we call this the AP-TEST. Then
a hypergraph is built as follows. Clusters from the previous step become
vertices and articulation points that fail AP-TEST become edges in the
hypergraph. A set of biconnected components of the hypergraph is iteratively
merged into one until there is no candidate component for further merging
as relaxing the cutoff score Tc.

2.2 Generation of the Input Data to BAG

BAG is originally designed to handle protein sequences which are typically 1,000
amino acid characters or less in length. So it cannot directly handle all pair-
wise alignments of genomes since there are numerous edges (pairwise matches)
between a pair of nodes (genomes). This issue is handled by generating subse-
quences with their own identifiers. However, the generation of subsequences is not
straightforward as illustrated in Fig. 3 where two different identifiers are gener-
ated for a single homologous region. Our approach is to convert local alignments
to subsequence identifiers which start at one of evenly spaced break positions.

Let a break position be denoted by b and a local alignment α be repre-
sented by (si, ei, sj , ej) where si and ei (sj and ej) are the starting and end
positions of α in genome Gi (Gj). Then α generates the subsequence identifiers
(Gi:pik, Gj :pjk), (Gi:pi(k+1), Gj :pj(k+1)), . . . , (Gi:qi, Gj :qj) where pi =
b�si/b�, pj = b�sj/b�, qi = b�ei/b�, qj = b�ej/b�. Table 1 shows the BAG input
for local alignment regions (497087, 499555, 698686, 701075) for NC 000908
vs. NC 000912 pair, (497227, 498276, 2682403, 2683463) for NC 000908 vs.
NC 000913 pair, and (698823, 699860, 2682400, 2683452) for NC 000912 vs.
NC 000913 pair. As discussed, the alignments start at slight different positions,
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Table 1. The bag input for local alignments, (497087, 499555, 698686, 701075) for
NC 000908 vs. NC 000912 pair, (497227, 498276, 2682403, 2683463) for NC 000908 vs.
NC 000913 pair, and (698823, 699860, 2682400, 2683452) for NC 000912 vs. NC 000913
pair to detect common COG0112.

seq1 seq2 score pos1 pos2

NC_000908:497000 NC_000912:698000 60562 87,2555 686,3075

NC_000908:498000 NC_000912:699000 60562 0,1555 0,2075

NC_000908:499000 NC_000912:700000 60562 0,555 0,1075

NC_000908:497000 NC_000913:2682000 19888 227,1276 403,1463

NC_000908:498000 NC_000913:2683000 19888 0,276 0,463

NC_000912:698000 NC_000913:2682000 22113 823,1860 400,1452

NC_000912:699000 NC_000913:2683000 22113 0,860 0,452

for example, positions 497087 and 497227 for NC 000908, which is not trivial to
handle given that there are numerous local matches for whole genomes. By gen-
erating subsequences that start at a 1000 bp break position (b = 1000), the two
different starting positions, 497087 and 497227 for NC 000908, have the same
identifier, NC 000908:497000, with their aligned positions adjusted as shown in
Table 1. Now BAG can combine matching regions using subsequence identifiers
into two clusters, {NC 000908:497000, NC 000912:698000, NC 000913:2682000}
and {NC 000908:498000, NC 000912:699000, NC 000913:2683000}.

3 Strategy for Combining Pairwise Matches

Let us summarize the whole procedure for combining pairwise matches in order
to generate multiple sequence alignments. For a set of genomes, {G1, G2, ..., Gn},

1. Compute pairwise alignments using BLASTZ for each pair of genomes, Gi

and Gj , 1 ≤ i < j ≤ n.
2. Generate subsequence identifiers at each breakpoint as described in Section

2.2 so that all pairwise genome data can be used for BAG. This is necessary
since each pairwise alignment for a local homologous region can start at
different position. For example, consider three local pairwise matches for a
gene a1in Fig. 4, a1−a2, a1−b1, and a1−c1. Positions for a1 in three pairwise
matches start at slightly different positions in most cases and generation of
subsequence identifiers can handle this easily (see Table 1 for a real example)

3. Once subsequence identifiers are generated, BAG enumerates biconnected
components with a common shared region. For example, all five genes in Fig.
4 form a biconnected component, but they do not share a common shared
region (we assume this since two different families are clustered together).
Increasing a cutoff to 1500 eliminates an edge between c1 and c2 from the
graph and recomputation will successfully separate the current graph into
two biconnected components.
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Fig. 4. Co-occurrences of genes in three genomes.

4. Among final biconnected components, i.e., those that successfully passed
RANGE-TEST, we select ones that cover at least k genomes. We call this
support value. By default, k is the number of genomes being aligned. For
the example in Fig. 4, k = 3. There are two biconnected components,
{a1, a2, b1, c1} and {b1, c2}, but {b1, c2} is not considered as an alignment
since SUPPORT({b1, c2}) < k.

4 Experimental Results

To evaluate the performance of our method, we have used completely sequenced
microbial genomes published in NCBI, grouped them into sets of genomes based
on taxonomy, and selected 12 groups as shown in Table 2.

The multiple alignment programs can be evaluated in terms of the number of
common COGs detected by alignment results; the common COGs are extracted
from protein table (PTT) files downloaded from GenBank at NCBI. In this
experiment, “common” COGs are those that are present in “all” genomes being
aligned. This criterion excludes any COGs present only in a proper subset of
genomes being aligned. As an alternative to our evaluation method, it is worth
noting the rigorous column-by-column comparing evaluation method that used
by TBA. Our method confirms only whether common homologous regions can
be detected or not, while the TBA method try to evaluate how accurate the
alignment result is. In the current implementation of our algorithm, focus is just
on how accurately pairwise alignments can be combined and the final alignments
are generated using existing multiple sequence alignment algorithms such as
CLUSTALW [7].

Given the goal of detecting common COGs present in all genomes, we can
evaluate the performance of multiple genome alignment algorithms in two ways.
The first evaluation criterion is that a common COG is detected only when the
region aligned by the algorithm is present in all genomes. The second criterion is



38 Jeong-Hyeon Choi et al.

Table 2. The 12 groups selected from microbial genomes for the experiments.

Actinobacteridae (5): NC 003450, NC 002677, NC 002755, NC 000962,
NC 004572

Alphaproteobacteria (5): NC 004463, NC 003317, NC 002678, NC 003103,
NC 000963

Bacillales (4): NC 002570, NC 000964, NC 003212, NC 002745

Betaproteobacteria (3): NC 003295, NC 003112, NC 003116

delta-epsilon (3): NC 000915, NC 000921, NC 002163

Ecoli (3): NC 000913, NC 002655, NC 002695

Enterobacteriaceae (4): NC 000913, NC 003197, NC 003143, NC 002528

Euryarchaeota (10): NC 002607, NC 000917, NC 000909, NC 003551,
NC 003552, NC 000916, NC 002578, NC 002689,
NC 000868, NC 000961

Firmicutes (7): NC 003030, NC 002570, NC 000964, NC 003212,
NC 002745, NC 003028, NC 002737

Mollicutes (5): NC 000908, NC 004432, NC 000912, NC 002771,
NC 002162

Mycoplasma (4): NC 000908, NC 004432, NC 000912, NC 002771

Thermoprotei (3): NC 000854, NC 003364, NC 002754

that a common COG is detected if the region aligned by the algorithm is present
at least in the half of the all genomes, i.e, the support value is more than half of
the number of genomes. The first criterion will be called as ALL and the second
as HALF.

We compared performances of TBA, MultiPipMaker (MPM), and different
versions of our algorithm BAG, BAG-BCC (Fw), BAG-BCC (Fw+Bw), BAG-
CC (Fw), and BAG-CC (Fw+Bw); Fw means the case that only forward local
alignments are used as TBA works, Fw+Bw means the case that both forward
and backward local alignments are used, CC means that connectedness is used
for clustering criterion, and BCC means that biconnectedness is used for clus-
tering criterion. With the ALL criterion, BAG (Fw+Bw) and MPM consistently
outperformed TBA. This is because TBA aligned forward strands only. To make
comparison with TBA fair, the alignment result of BAG (Fw) is shown in the
table. BAG (Fw) outperformed TBA except for Actinobacteridae, delta-epsilon,
and Enterobacteriaceae. With the relaxed HALF criterion, both BAG and TBA
are competitive. Detailed summary of the alignment results are given in Ta-
ble 3. In the tables, the second column represents the number of common COGs
among all genomes in each group, the third and the seventh columns represent
the number of common COGs detected by TBA with ALL and HALF condition
respectively, the fourth and ninth columns by MPM, the fifth and the tenth
columns by BAG-BCC (Fw), and the sixth and the eleventh columns by BAG-
BCC (Fw+Bw). TBA could not align Ecoli for a unknown system related reason.
Note that BCC (biconnectedness) produced better results than CC (single link-
age), which demonstrates clearly the effectiveness of biconnectedness though we
omit it for page limit. It is also worth looking at how many detected alignments
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Table 3. The alignment results of TBA, MPM, and BAG in terms of the number of
common COGs detected with the ALL and HALF criterion.

ALL HALF
Group #COGs TBA MPM BAG TBA MPM BAG

Fw Fw+Bw Fw Fw+Bw

Actinobacteridae 447 11 47 9 66 450 535 227 671
Alphaproteobacteria 468 0 17 1 62 17 357 87 487
Bacillales 935 85 192 91 398 756 1032 330 884
Betaproteobacteria 979 0 255 7 102 704 633 18 150
delta-epsilon 759 52 237 9 111 755 807 12 128
Ecoli 1972 1897 1004 1487 2006 1032 1555
Enterobacteriaceae 520 29 117 20 210 1694 1801 389 1123
Euryarchaeota 330 0 1 0 4 0 90 11 177
Firmicutes 573 0 12 2 39 87 300 189 514
Mollicutes 258 1 21 1 37 27 231 48 200
Mycoplasma 291 2 40 2 49 297 356 16 155
Thermoprotei 671 0 74 5 175 37 347 6 211

Table 4. The alignment results of TBA, MultiPipMaker (MPM) and BAG in terms
of the number of clusters that detect common COGs (with the ALL criterion) and
the number of clusters generated by the algorithm. The number pair n/m denote that
m alignments were generated by the corresponding algorithm and, among them, n
alignments correspond to the common COGs. Note that the number of clusters are
significantly smaller than the number of COGs detected in Table 3 since an alignment
covers multiple common COGs that appear in tandem.

BAG
Group TBA MPM BCC CC

Fw Fw+Bw Fw Fw+Bw

Actinobacteridae 28 / 1731 45 / 3010 13 / 361 82 / 1632 1 / 70 9 / 20
Alphaproteobacteria 0 / 871 12 / 14426 2 / 130 68 / 1413 0 / 107 2 / 121
Bacillales 99 / 1514 169 / 6368 115 / 455 480 / 1411 42 / 211 46 / 176
Betaproteobacteria 0 / 328 244 / 1604 8 / 26 117 / 182 8 / 30 27 / 41
delta-epsilon 20 / 250 190 / 1433 11 / 12 94 / 127 12 / 13 36 / 44
Ecoli / 379 / 1303 1043 / 1060 1957 / 2039 988 / 992 648 / 676
Enterobacteriaceae 40 / 1453 83 / 5489 26 / 523 231 / 1626 3 / 325 35 / 360
Euryarchaeota 0 / 736 1 / 3954 0 / 240 8 / 1264 0 / 152 0 / 63
Firmicutes 0 / 2000 20 / 10769 3 / 720 64 / 1985 2 / 294 1 / 147
Mollicutes 2 / 443 20 / 1311 2 / 61 51 / 343 1 / 47 6 / 33
Mycoplasma 2 / 298 36 / 1025 3 / 36 61 / 240 3 / 31 9 / 31
Thermoprotei 0 / 51 86 / 1414 9 / 12 274 / 338 9 / 11 112 / 136

correspond to the common COGs. Table 4 shows the result with the ALL cri-
terion. In general, higher ratios of alignments by BAG correspond to common
COGs than those by TBA and MPM. However, this does not necessarily imply
that BAG generates more accurate alignment results since there are many re-
gions shared among genomes that are outside common COGs. The primary role
of genome alignment algorithms is probably to generate common shared regions
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in multiple genomes so that these regions can be investigated further biologically
or computationally, thus our experiment suggests that BAG is complementary
to existing algorithms such as TBA and MPM.

5 Conclusion

In this paper, we proposed a new strategy for multiple genome alignment. It
uses a sequence clustering algorithm, BAG, to combine pairwise alignments. Our
strategy accurately detected multiple homologous regions and performed com-
petitively over existing algorithms as shown in the experiments with 12 groups
of 56 microbial genomes in terms of the number of common COGs detected. This
evaluation method is not sufficient in a sense because COGs are protein coding
genes and there are many interesting regions common in multiple genomes such
as non-coding RNAs and intergenic regions. Alignments of these regions together
with biological interpretation will be reported in a forthcoming paper. However,
the most primary use of genome alignment tools is to detect coding regions as
mentioned in [20], and we believe that our evaluation method using common
COGs is effective, especially for microbial genomes where intergenic regions are
quite small.
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Abstract. In this paper we present an extended model related to reconciliation
concepts. It is based on gene duplications, gene losses and speciation events. We
define an evolutionary scenario (called a DLS-tree) which informally can repre-
sent an evolution of genes in species. We are interested in all scenarios - not only
parsimonious ones. We propose a system of rules for transforming the scenarios.
We prove that the system is confluent, sound and strongly normalizing. We show
that a scenario in normal form (i.e. non-reducible) is unique and minimal in the
sense of the cost computed as the total number of gene duplications and losses.
Moreover, we present a classification of the scenarios and analyze their hierarchy.
Finally, we prove that the tree in normal form could be easily transformed into the
reconciled tree [12] in duplication-loss model. This solves some open problems
stated in [13].

Keywords: molecular evolution, phylogenetic tree, reconciliation, gene duplica-
tion, gene loss, computational biology.

1 Introduction

The relationships between species cannot always be inferred from a single gene family.
Gene duplication, gene loss, gene convergence, horizontal gene transfer and errors in
sequencing could cause unexpected dissimilarities between gene family trees. Those
incosistencies lead to the two important problems: reconstruction of the species tree
from a family of possibly different gene trees and reconciling a given gene tree with a
given species tree.

The problems have been studied in the seventies of 20th century by Goodman [6]
and then in the nineties by Page, Guigó, Muchnik, Smith and others [5, 9, 11, 12, 14, 15].
The concepts of mapping and reconciling trees were introduced. They inspired research
on duplication-loss models (we call them DL-models) and their extensions, for instance
models with a horizontal gene transfer [3, 7, 10]. All DL-models are believed to be
biologically meaningful [11].

Almost all approaches to reconstruction of evolution history are parsimonious i.e.
it is assumed that the solution with the minimal cost is the most likely one. There are
several possible cost functions: size of the reconstructed tree, or the number of specified
evolutionary events, e.g. gene duplications, or the total number of gene duplications and
gene losses. The latter measure, called mutation cost, was particularly popular among

� Financial support is provided by KBN Grant 4 T11F 020 25

J. Lagergren (Ed.): RECOMB 2004 Ws on Comparative Genomics, LNBI 3388, pp. 42–54, 2005.
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researchers [8, 12]. One of the crucial terms in the model is that of reconciled tree which
represents the common evolutionary history of genes and species. In [2] authors present
several definitions of a reconciled tree which were used recently in the literature. They
proved that the definitions are equivalent and that the tree is minimal with respect to
the size. Paper [2] still left open questions: (see [13]) is the reconciled tree minimal
with respect to the mutation cost or is it minimal with respect to the total number of
gene duplications (duplication cost). Also the question of uniqueness of such a tree
was left open. In the present paper we answer all these questions. We build a formal
framework of evolutionary scenarios which represents a common history of genes and
species under the assumption that only gene duplications, losses and speciations may
occur. These scenarios are called here DLS-trees1. Given a DLS-tree T we show how
to retrieve from T a gene tree gene(T ), as well a species tree spec(T ). A DLS-tree is
similar to a concept of a reconciliation (see [1]) for a given species tree and a gene tree.
We introduce a system of rules for transforming DLS-trees. This is a certain kind of a
term rewrite system. It has pleasing mathematical properties: soundness2, confluence
and strong normalization. We prove that, a DLS-tree in normal form has minimal size,
minimal mutation cost, and minimal duplication cost. It follows from our theory that
for every DLS-tree T in normal form, if DT is the set of all DSL-trees which have the
normal form T , then T is the unique tree in DT among all trees in DT having the same
mutation cost. We show an example that the uniqueness property fails when mutation
cost is replaced by duplication cost (see Fig. 8). We show a one-to-one correspondence
between the reconciled trees and the DLS-trees in normal form. Thus the theory build
in this paper is immediately applicable to reconciled trees. We obtain a formula for
computing the total number of duplications and losses in a reconciled tree, as a function
of G and S. A formal analysis of these formulas in the context of reconciled trees can
be found in [4, 16].

The paper is organized as follows first we define basic terms and DLS-trees. Then
we show how to extract a gene and a species tree from a DLS-tree. In sections 4 and 5
we present the system of rules and prove soundness, completeness and confluence. In
6 we present an example of a hierarchy of DLS-trees together with all their reductions
(Fig. 8). In section 7 we present formulas for computing the tree in normal form (for
a given species tree and a given gene tree) and the number of duplications and losses.
Finally, we show a one-to-one correspondence between the reconciled trees and the
DLS-trees in normal form.

2 Gene and Species Trees

Let I be a finite set, called a set of species. A gene tree is a rooted binary directed tree
whose leaves are labelled by the elements fromI. The labelling need not be one-to-one.
A species tree is a gene tree3 whose leaves are uniquely labelled.

Let T be a gene tree. For a node v of T by T (v) we denote the subtree of T rooted
in v. For each node v of a gene tree T we define a multiset mT

v = {xi1
1 , x

i2
2 , ..., x

ik
k }, where

1 DLS stands for Duplication, Loss and Speciation
2 If T reduces to T ′ then gene(T ) = gene(T ′) and spec(T ) = spec(T ′)
3 Although it seems to be strange from biological point of view this definition is mathematically

correct. Here a species tree is a special case of a gene tree
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for j ∈ {1, ..., k} the upper index i j of x j is the number of leaves labelled x j in T (v) 4.
For the tree G presented in Fig. 2 we have mr = {h2, c1, d1}, where r is the root of G.
Analogously we define a cluster for v as a set mT

v = {x1, ..., xm}. Let MT denote the
multiset {mT

v |v ∈ V}. In order to make the notation more readable mT
v will be denoted

by x1...xm. Note that if T is a species tree thenmT
v = mT

v . We denote by root(T ) the root
of T and by L(T ) the set of all labels of leaves in T .

A multisetM is said to determine a species tree ifMS =M, for some species tree
S. It can be proved thatM determines a species tree if only if

(M1) ifM is nonempty, then
⋃M ∈M,

(M2) for each a ∈ ⋃M, {a} ∈ M,
(M3) for each A ∈ M such that A is not a singleton, {X|X ∈ M and X � A} contains

two maximal (in the sense of inclusion) sets.

It can be shown that if T and S are species trees andMT = MS then T = S . The above
property does not hold in general for gene trees.

We use the standard nested-parenthesis notation for trees i.e.:

– The empty tree will be denoted by ∅,
– The label a denotes a tree with one node labelled by a,
– If Tp and Tq are two nonempty trees with roots p and q, respectively, then (Tp, Tq)

is a tree whose root has two children: p and q. The trees Tp and Tq are rooted in
(Tp, Tq) at the nodes p and q, respectively.

3 DLS Trees

Now we define a crucial notion of a DLS-tree. Such a tree could be interpreted as “an
evolutionary scenario representing history of genes in the context of species evolution”.

First we start with some biological motivations. Fig. 1 presents all aspects of the
common evolution of genes and species under assumption that only gene duplications,
gene losses or speciations can occur.

TIME

SPECIATION

SPECIATION

GENE DUPLICATION

GENE DUPLICATION

GENE LOSS

GENE LOSS

Dog Human HumanCat Dog

EVOLUTION OF GENES
IN SPECIES

EVOLUTION OF GENESEVOLUTION OF SPECIES

HumanCat CatDogHuman

Fig. 1. Evolution of species and genes

The left tree presents an evolutionary species tree and its interpretation is clear.
The rightmost tree presents an evolution of a family of genes which are related to the

4 We assume that i j > 0
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three species. Note, that we have two genes labelled by the species Human. It means
that both genes are currently present in human. This situation is a consequence of the
first gene duplication which happened early in the evolution when only one species
existed i.e. the common ancestor of human, cat and dog. We see also that some of the
gene lineages are lost. Here we have two gene losses. Current methods of gene tree
reconstruction (from gene sequences) cannot detect this kind of losses which are shown
in this Figure. Although if we know the species tree and the gene tree we can find
evolutionary scenarios which explain the differences between the tree in terms of gene
duplications and losses. One of them is shown in the middle tree (Fig. 1). We see the
embedding of the gene tree (right) into the species tree (left). It is clear that this kind
of embedding is biologically correct. Note, that the internal nodes of the gene tree are
related either to speciations or to gene duplications.

Our goal is to present a mathematical model of the evolutionary scenario. Let us
adopt the following symbols � (duplication), � (loss), (speciation) and � (gene).

A DLS-tree is either an empty tree, or a binary rooted tree T = (V, E) such that the
elements of V are labelled by nonempty subsets of I. For v ∈ V let Λv denote the label
of v. V is divided into four disjoint sets V�, V�, V� and V such that5

(D1) if v ∈ V� then v is a leaf in T labelled by a species a (v is called a gene node),
(D2) if v ∈ V� then v is a leaf in T (v is called a loss node),
(D3) if v ∈ V� then v has two children a and b such that Λa = Λb = Λv (v is called a

duplication node),
(D4) if v ∈ V then v has two children a and b such that Λa ∪ Λb = Λv and Λa ∩ Λb = ∅

(v is called a speciation node),
(D5) for all v,w ∈ V such that Λv ∩ Λw � ∅ we have either Λv ⊆ Λw or Λv ⊇ Λw.

By LabelsT we denote the set of all labels in T .

V� node (gene)
V� node (loss)
V� node (duplication)
V node (speciation) h - human, c - cat, d - dog

h c d

S hcd

hcd

h

cd
cd

c d cd

hcd

h cd

D

h c d h

G

Fig. 2. Species (S), DLS (D) and gene tree (G) for the example shown in Fig. 1

Compare Fig. 2 which presents the trees in our model with Fig. 1. With a DLS-tree
T we associate a cost which is the total number of gene duplications and losses in T .
This cost is known in the literature as a mutation cost [8].

5 Sometimes we use an upper index to distinguish objects from different trees
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Sometimes we will use a linear (term-like) representation of DLS-trees (we omit
the formal definition). For example the tree D in Fig. 2 can be described as ((h, ((c, d) ,
cd�)�) , (h, cd�) )�.

3.1 Extracting Gene and Species Trees from DLS Trees

We explain how to extract from a given DLS-tree a gene tree, and a species tree, relying
on information contained in its labels.

We start with the gene tree. For a set of leaves L in T let T L be the smallest subtree
of T containing L as its set of leaves. The homomorphic tree T |L of T induced by L is
the tree obtained from T L by contracting all nodes of degree 2 except for its root (i.e.
for each such a node x: create an edge connecting the parent of x with the only one child
of x; remove x and all edges incident on it) [2, 9]. Now we can use the homomorphic
tree to get the gene tree from a DLS-tree. Let T be a DLS-tree. We set gene(T ) to be the
gene tree defined by T |V� . The labels of leaves in gene(T ) are inherited from T . One can
easily check that for the trees from Fig. 2 we have gene(D) = G.

Now we present the extraction of the species tree. The natural question is whether
the set Labels determines a species tree. Fig. 3 presents a DLS-tree which does not sat-
isfy this property. We see that the tree contains an incomplete information on a species
relationship due to the loss nodes. To solve the problem we have to identify species for
which the reconstruction (from labels) will give a species tree. We call a species s lost in
T if s occurs only in loss nodes of T . Formally the set of lost species can be defined by
lostT = L(T )\⋃{ΛT

v |v ∈ VT
I } (see Fig. 3 for example). It can be proved that if we remove

lost species from all labels of a DLS-tree then we will be able to reconstruct the species
tree. Formally we claim that {Λv \ lostT |v ∈ T } \ {∅} determines a species tree. We denote
the tree by spec(T ). Let us notice that for a DLS-tree T we have L(gene(T )) = L(spec(T )).

abcde

ab

a b

cde

D

LabelsD = {a, b, ab, abcde}
lostD = {c, d, e}

a b

spec(D)

Fig. 3. Incomplete DLS-tree D

The species tree for the incomplete DLS-tree D is presented in Fig. 3.
We call a DLS-tree complete if the tree has no lost species. Fig. 4 presents a com-

plete DLS-tree.

4 DLS Rules

We define DLS rules (we call them rules). They will be used to transform DLS-trees.
Each rule is defined by P

Q where P (premise) and Q (conclusion) are DLS-trees. By a
redex of a rule R we mean a node v in a tree to which the premise of R is applicable. A
DLS-tree T can be transformed into T ′ by a rule R in node v iff
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abc
abc

a
a

a a
a

bc

b c

abc

abc
abc

a
bc

bc
bc

b c

D

a c a b c

gene(D)

a b c

spec(D)

Fig. 4. A complete DLS-tree D and extracted gene and species trees. The cost equals 10

SPEC
(A�,B�)
A∪ B�

Type I (1)

DUP
(L(S )�, S )�

S
Type I (2)

TMOVE
((S 1,C�) , (S 2,C�) )�

(C�, (S 1, S 2)�)
Type II (3)

CLOST
((S 1, L(S 2)�) , (L(S 1)�, S 2) )�

(S 1, S 2)
Type II (4)

Fig. 5. DLS rules

– P equals T (v),
– T ′ is constructed from T by replacing this subtree by the tree Q.

Let R(T, v) denote the result of reduction.
We write T → T ′ if T ′ is constructed from T by an application of one rule. We

write T � T ′ if T ′ is constructed from T by applying zero or more rules. We use→−1

to denote backward transformation i.e. T ′ →−1 T iff T → T ′. The rules are presented in
Fig. 5 and their graphical interpretation in Fig. 6. It should be clear that an application
of any rule to a DLS-tree yields a DLS-tree again and the reduction decreases the cost.

The following Lemma states the soundness of the system:

Proposition 1. (Soundness) If T → T ′ then gene(T ) = gene(T ′) and spec(T ) = spec(T ′).

5 Properties of the System

In this section we present some important properties of DLS-trees. A DLS-tree contain-
ing no type I redexes is called a semi-normal tree.

A semi-normal tree T is called fat if the following conditions are satisfied

– every duplication node has label L(T ).
– each speciation node has exactly one lost child.

Fig. 7 presents an example of a fat DLS-tree.
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A

A
A

S
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DUP−−−→ A
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T ′
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A

T ′
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B

S 1
C

A

B
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S 2
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CLOS T−−−−−→
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B

S 1

C

S 2

T ′ A

A

B

S 1
C

A

B

S 2
C

T

T MOVE−−−−−−→
A

C
B

B

S 1

B

S 2

T ′

Fig. 6. DLS rules

It can be proved that for a fat tree each child of a duplication node is either a dupli-
cation node, or is the root of a tree of the form:

(B1�, (B2�, ...(Bk�, a) ...) ) , (5)

where a ∈ I and k ≥ 0. We call the tree (5) a chain tree. Its target is a.

a a b c

G

a b c

S
abc

abc

abc

a bc

abc

a bc

abc

abc

a
bc

b c

abc

a
bc

b c

T

Fig. 7. A fat DLS-tree T, its gene tree G and species tree S

Extracting gene and species trees from fat trees is quite natural (see Fig. 7):

Proposition 2. Let us assume that T is fat. Then

(1) gene(T ) is constructed from T by replacing each chain tree in T by a single node
labelled by its target,

(2) if there are no lost species in T then spec(T ) is determined by
⋃

C∈C(T )M
C where

C(T ) denotes the set of all chain trees in T .

Also converse holds:

Proposition 3. Given a gene tree G and a species tree S such that L(G) = L(S). There
exists a unique fat tree T such that gene(T ) = G and spec(T ) = S.

Proof. For each label a ∈ L(G) we define the chain tree Sa with a target a. Let p0...pk

be the (unique) path in S such that p0 = root(S) and pn has label a. Let Sa be the chain
tree (5) such that Bi = mSpi−1

\ mSpi
for i = 1, ..., k. Note, that ΛSa

root(Sa) = L(G).
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Now we show the construction of the fat tree T . We transform each internal node
of the gene tree into a duplication node labelled by L(G). Each leaf labelled by a in the
tree is replaced by Sa. We claim, that T is correctly defined. Details are omitted. �


We define ∼ to be the least equivalence relation in the set of DLS-trees which con-
tains relation→. Thus, if T ∼ T ′ then T can be transformed into T ′ by applying DLS
rules zero or more times in any direction.

Proposition 4. Every DLS-tree is equivalent to a unique fat tree.

Proof. Apply the following procedure:
(1) First we eliminate iteratively all redexes of the rules DUP and SPEC.
(2) Eliminate all redexes of TMOVE in a reverse direction.
(3) Eliminate all redexes of CLOST in a reverse direction.

We claim that after finishing this procedure we get a unique fat tree. �

Observe that we can increase the cost of a fat tree by applying SPEC in direction→−1;
in this way we increase each B� by at most |B| − 1, or by applying DUP in direction
→−1; this can be done an unbounded number of times, increasing the number of the
duplication nodes an introducing spurious loss nodes I�.

Note, that applying transformations (2) and (3) (see proof of Prop. 4) we get a tree
with a larger size. Thus we conclude that a fat tree is the heaviest (in the sense of size)
among all equivalent semi-normal trees.

We can also prove the completeness of the system. Recall that a complete DLS-tree
is a tree without lost species:

Proposition 5. (Completeness) Let T1 and T2 be complete DLS-trees such that
gene(T1) = gene(T2) and spec(T1) = spec(T2). Then T1 ∼ T2.

Proof. By Proposition 4 there exist fat trees T ′1 and T ′2 such that T1 ∼ T ′1 and T2 ∼ T ′2.
By Prop. 1 for i = 1, 2 we have gene(Ti) = gene(T ′i ) and spec(Ti) = spec(T ′i ). By the
assumption and Proposition 3 we get T ′1 = T ′2 (from the uniqueness of the fat tree). �


The following Proposition states that the system is weakly confluent. We omit the
technical proof which requires analysis of all possible cases.

Proposition 6. Let T be a DLS-tree. Then for each T1 and T2 such that T → T1 and
T → T2 there exists T3 such that T1 � T3 and T2 � T3.

Theorem presented below states that our system is confluent.

Theorem 1. (Confluence) Take a DLS-tree T . There exists a unique DLS-tree T ∗ (in
normal form) such that every sequence of reductions in direction→ yields T ∗.

Proof. The termination follows from the fact that every application of rules reduces the
cost.

Let us assume that T ∗1 and T ∗2 are in normal form such that T � T ∗1 and T � T ∗2 .
Obviously T ∗1 and T ∗2 are semi-normal. From 1 and the proof of Prop. 4 we conclude
that there exists a unique fat tree T f such that T f � T ∗1 and T f � T ∗2 . Thus by Prop. 6
there exists T ∗ such that T ∗1 � T ∗ and T ∗2 � T ∗. But both trees are in normal form thus
T ∗1 = T ∗2 = T ∗. �
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Theorem 2. For DLS-trees T1 and T2 we have T1 ∼ T2 iff T ∗1 = T ∗2 .

Proof. (=>). Obviously T ∗1 ∼ T ∗2 . From the proof of Prop. 4 and Cor. 1 we conclude
that there exists a unique fat tree T f such that T f � T ∗1 and T f � T ∗2 . By Thm. 1 there
exists a unique tree T ∗ in normal form such that T f � T ∗. Finally, by Prop. 6 we get
T ∗1 = T ∗2 = T ∗.
(<=). We have T1 � T ∗1 and T2 � T ∗2 . Thus T1 ∼ T2. �

Corollary 1. For a DLS-tree T , T ∗ is the unique tree with minimal cost in the set of all
trees which are equivalent to T .

6 Semi-normal Trees

As we noticed the semi-normal trees are important representants of each class of equiv-
alent DLS-trees. In this section we consider a hierarchy of equivalent semi-normal trees
and summarize its properties.

By the proof of Prop. 4 and further discussion we can transform each semi-normal
tree into the unique fat tree in two steps. In the first step we apply all possible CLOST
rules in the reverse direction. Then we apply TMOVE rules in the reverse direction.

Analogously, we can transform each semi-normal tree into the unique tree in a nor-
mal form. First we apply TMOVE rules, then CLOST in the direction→.

An example of a hierarchy of semi-normal trees with all possible reductions is pre-
sented in Fig. 8. In our example we have all possible 10 semi-normal DLS-trees. T f

is the fat tree and T ∗ is the tree in normal form. The labels of the internal nodes are
not shown. They can be easily reconstructed from the labels of the leaves. The nodes
marked by vi are the redexes of the rules. For instance CLOST(v4) above the arrow from
T2 to T5 denotes the equation T5 = CLOST(T2, v4).

Note that, if we consider only the duplication cost we loose the uniqueness of the
minimal tree In Fig. 8 the trees T ∗ and T9 have the same duplication cost i.e. 2.

7 Tree in Normal Form

In this section we present the construction of a DLS-tree in normal form ρ(G,S) for a
given species tree S and a gene tree G, subject to the condition ∅ � L(G) ⊆ L(S).

Let� denote a path existence relation in S i.e. a� b iff there exists a path from a
to b in S. Let � denote a child relation i.e. a � b iff b is a child of a. Reversed arrows
will be used to denote the reversed relations.

Let g ∈ G. By M(g) we denote the node s ∈ S such that

mSs =
⋂
{mSw | mGg ⊆ mSw}.

The obtained function M : G → S is called in the literature [6, 12] a least common
ancestor mapping or shorter lca-mapping (see Fig. 9).

The definition of ρ(G,S) is by structural induction on the size of G and S. Let
s = root(S) and g = root(G). If S and G are leaves then ρ = a, where a is the label of g.
Otherwise, let p and q be the children of g then
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Fig. 8. Example hierarchy of semi-normal trees with all possible reductions
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ρ(G,S) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(ρ(G(p),S), ρ(G(q),S))� if M(g) = s = M(q), (DUP)
(ρ(G(p),S(a), ρ(G(q),S(b))) if M(p)� a � s = M(g)

and s � b� M(q), (S PEC)
(ρ(G,S(a)),mSb�) if M(g)� a � s � b � a. (LOS S )

(6)

We claim that Equation (6) correctly defines a DLS-tree. One of the most important
properties of ρ is stated below:

Lemma 1. Let G be a gene tree and S be a species tree such that ∅ � L(G) ⊆ L(S).
Then ρ(G,S) is in normal form.

Again, we omit the details of the proof. Now, we conclude that if T is a complete DLS-
tree then T ∗ = ρ(gene(T ), spec(T )) 6.

Having formula (6) we can compute the number of evolutionary events in a tree in
normal form. We can prove the following Lemmas:

Lemma 2. Let G be a gene tree and S be a species tree such that ∅ � L(G) ⊆ L(S).
Then the number of duplications in ρ(G,S) equals

dup(G,S) = |{g | M(g) = M(p) where p is a child of g in G}|. (7)

Lemma 3. Let G be a gene tree and S be a species tree such that ∅ � L(G) = L(S).
For each node g, we define a non-negative integer lossg as follows: we set lossg = 0 if g
is leaf in G, if g is an internal node in G then let p and q denote the two children of g.
We define

lossg =

{
d(g, p) + 1 if M(p) � M(g) = M(q),
d(g, p) + d(g, q) otherwise.

(8)

where d(g, g′) = |{s | mSM(g′) � mSs � mSM(g)}|.
Then the number of gene losses in ρ(G,S) is given by

∑
g∈G lossg.

Now we present a definition of the reconciled tree taken from [2]. We know (see [2])
that this definition is equivalent to the definition given by Page [12]. Let s = root(S)
and g = root(G). The reconciled tree R(G,S) of G with respect to S is the tree G if G
and S are leaves. Otherwise, let p and q are the children of g, then

– (R(G(p),S),R(G(q),S)) if M(g) = s = M(q),
– (R(G(p),S(a)),R(G(q),S(b))) if M(p)� a � s = M(g) � b� M(q),
– (R(G,S(a)), S (b)) if M(g)� a � s � b � a

Theorem 3. Let G be a gene tree and S a species tree such that ∅ � L(G) ⊆ L(S). We
define a transformation θ which takes one argument: a DLS-tree and returns a recon-
ciled tree. Let

– θ(A�) = S(v) where v in S such that mSv = A,
– θ(a) = a where a ∈ I,
– θ((T1, T2)∗) = (T1, T2) where ∗ ∈ { ,�}.

Then θ(ρ(G,S)) = R(G,S).

6 This result can be extended to any DLS-tree. Here we omit the discussion
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The easy proof of Theorem 3 follows immediately from the definition of the rec-
onciled tree and the definition of ρ. We prove a one-to-one correspondence between
DLS-trees in normal form and reconciled trees. Moreover, we claim that the formula
for computing the mutation cost is the same for the reconciled tree [8] and the tree in
normal form.

a b c d e

G

a e b c d

S

a e b c a e b c d a e b c d

R(G,S)

a e b c ae b c d a e bc d

ρ(G,S)

Fig. 9. Example of mapping M (only for internal nodes of G), reconciled tree R(G,S) and DLS-
tree ρ(G,S)

Fig. 9 presents an example of a lca mapping M for the internal nodes of G. It also
presents a reconciled tree R(G,S) and a DLS-tree ρ(G,S). Note that ρ(G,S) equals the
tree T ∗ from Fig. 8. It is easy to notice that θ(ρ(G,S)) = R(G,S). For a more readable
presentation all the lost gene lineages are shown with dotted lines. The solid lines in
R(G,S) and ρ(G,S) represent embedded gene trees.

a e b c d a eb c d

E T

Fig. 10. The evolution of species and genes (cont. example from Fig. 9)

Fig. 10 is a continuation of the example presented in Fig. 9. Tree E is the final
embedding of G into S. Tree T presents an extraction of gene lineages from E. Note
that the tree T is equal topologically to the DLS-tree ρ(G,S).
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Abstract. Identifying gene clusters, genomic regions that share local
similarities in gene organization, is a prerequisite for many different types
of genomic analyses, including operon prediction, reconstruction of chro-
mosomal rearrangements, and detection of whole-genome duplications. A
number of formal definitions of gene clusters have been proposed, as well
as methods for finding such clusters and/or statistical tests for determin-
ing their significance. Unfortunately, there is very little overlap between
previously published rigorous analytical statistical tests and the defini-
tions used in practice. In this paper, we consider the max-gap cluster:
a contiguous region containing a maximal set of homologs, where the
number of non-homologous genes between pairs of adjacent homologs is
never greater than a predefined, fixed parameter, g. Although this is one
of the models most widely used in practice, currently the statistical sig-
nificance of max-gap clusters can only be evaluated using Monte Carlo
simulations because no analytical statistical tests have been developed
for it. We give exact expressions for the probability of observing such a
cluster by chance, assuming a simple reference-region scenario and ran-
dom gene order, as well as more efficient methods for approximating this
probability. We use these methods to identify which regions of the pa-
rameter space yield clusters that are statistically significant. Finally, we
discuss some of the challenges in extending this model to whole-genome
comparison.

1 Introduction

Identification of conserved chromosomal segments is an essential first step for
many different types of genomic analyses. Regions of similar gene content in
related genomes can provide evidence for evolutionary relatedness or functional
selection on gene order. For example, within a single genome the pattern of dupli-
cated regions can provide evidence for large-scale or whole-genome duplication [2,
17, 18, 40, 53, 54, 66–68]. Conserved segments between different genomes, on the
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Gap of size 4
n=24, m=9, h=3, g=2

Cluster of size 3
and length 4 Cluster of size  5 and length 10

Fig. 1. A sample genome (n = 24), with m = 9 genes of interest shown in black. When
the maximum gap allowed is g = 2 and the minimum cluster size is h = 3, then two
clusters are found. The rightmost black gene is not part of any cluster.

other hand, have been used extensively to reconstruct the history of chromoso-
mal rearrangements and infer an ancestral genetic map for a diverse group of
species [8, 11, 16, 43, 41, 55, 47, 51], as well as to provide coarse-grain features for
new phylogenetic approaches [6, 12, 26, 49, 50, 62]. In bacteria, conserved gene
order and content have been used for prediction of operons [7, 20], horizontal
transfers [36], and more generally to help understand the relationship between
spatial organization and functional selection [31, 35, 45, 60, 61].

The common goal in all of these analyses is either to detect regions that
share a common ancestor or where gene content is under functional selection.
The signature of such conserved regions, which we call gene clusters, will be
similar gene content, but we do not require gene content or order be strictly
conserved as this would rule out many more distantly related regions.

It is not obvious how to choose a formal definition that best captures our
intuitive notions about gene clusters. A number of definitions have been pro-
posed, as well as algorithms for finding clusters which meet these definitions and
statistical tests to evaluate their significance [3, 22, 23, 29]. The most stringent
of these define conserved segments as two or more contiguous regions that con-
tain the same genes in the same order [42, 44] and sometimes orientation [45, 60,
68]. However, such stringent definitions will invariably lead to the exclusion of
many regions that did indeed descend from a single ancestral region but have
since undergone small rearrangements. More flexible definitions allow for some
amount of divergence and rearrangement.

Many of these more flexible definitions are based on a simple model in which a
genome is represented as an ordered set of n genes: G = (g1,. . .,gn). Chromosome
breaks are ignored and it is assumed that genes do not overlap. We start with
a simple abstraction in which m genes (“the black genes”) are pre-specified
as interesting. These m genes may be of interest because their homologs are
contiguous in another region or genome (the “reference region”) or because they
share some functional properties. We are interested in finding a large group of
black genes that appear in close proximity. The size of the cluster is usually
quantified as the total number of black genes in the cluster, where a complete
cluster contains all m black genes and an incomplete cluster contains only a
subset of the black genes. For example, a short genome with n = 24 genes is
illustrated in Figure 1. The m = 9 black genes are shown grouped into two
incomplete clusters, of size three and five respectively.

Although it is quite clear how to characterize cluster size, there is no agreed
upon definition of “close proximity.” Some definitions restrict the total length of
the cluster [15] (the total number of genes from the first to the last black gene in
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the cluster). Others constrain the cluster density (the proportion of black genes
in the cluster, or size / length). Others require only that clusters be compact [52],
where compactness is determined by the distance, or gap, between adjacent black
genes, that is, the number of white genes between them. For example, in Figure 1
the gap between the first and second black genes is one and the gap between the
second and third black genes is zero. Of the definitions that constrain the gap
sizes, some allow no gaps in a cluster [27, 28], others limit the sum of all gaps,
while the majority constrain the size of the largest gap observed [5, 10, 40, 45,
56, 60, 65, 67].

In addition to cluster size and length, many cluster definitions constrain gene
order, with some requiring a strictly conserved gene order, while others allow
only a fixed number of order violations [25]. The majority ignore gene order
altogether.

Although a number of formal definitions of gene clusters have been proposed,
there is unfortunately very little overlap between cluster definitions used in anal-
yses of genomic data and the definitions upon which rigorous analytical statis-
tical tests are based. In this paper, we focus on a particular cluster definition
that is widely used in genomic studies, including the identification of large-scale
duplications in Arabidopsis [5] and the chordate lineage [40], the assignment of
functions to uncharacterized genes in prokaryotes [45, 60], and the prediction of
putative operons in newly sequenced bacterial genomes [10]. According to this
definition, gene order is disregarded, and there is no limit on the total number
of gaps as long as the maximum gap between adjacent black genes in the cluster
is not too large. To distinguish these clusters from our informal notion of a clus-
ter we call them max-gap clusters. A max-gap cluster is a maximal set of black
genes where the gap between adjacent black genes is never larger than g. For
example, when the maximum gap allowed is g = 2, three clusters can be found
in the example genome in Figure 1. The first has size three and length four, the
second has size five and length ten, and the third is a singleton.

The max-gap cluster definition has a number of desirable properties. It is
flexible in that it does not require that every gene in the cluster have a homolog,
yet it guarantees that the gap between adjacent homologs will not be too large.
As a result, the density of a cluster is guaranteed to be no less than 1/(g + 1).
This definition does not arbitrarily constrain the cluster length, but instead lets
clusters grow to their “natural” size. Consequently, clusters will never overlap:
unlike some other cluster definitions [15, 9], a gene can never be considered part
of two distinct clusters that cannot be merged. On the other hand, two max-gap
clusters containing the same number of homologs may have significantly different
densities. For example, the length of a cluster of size m can range from m (density
of one) to g(m− 1) + m (a density close to 1/(g + 1)). Finally, an algorithm has
been developed for finding max-gap clusters efficiently [4]. However, most groups
do not describe in detail the algorithm they use for finding max-gap clusters, so
it is not clear whether they are using an efficient or even a correct algorithm.

Analytical statistical models in the literature are designed for other defini-
tions of gene clusters [9, 14–16,63, 66] and it is not obvious how to extend them to
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apply to this commonly used cluster model. Studies based on the max-gap cluster
model usually use randomization to estimate the significance of clusters [5, 40,
45, 56, 65, 67]. However, this approach “is computationally expensive and does
not permit very precise estimation of the probabilities of rare events” [9]. In ad-
dition, parameter values such as the maximum gap and minimum cluster size are
generally selected in an ad-hoc manner. A formal, rigorous mathematical model
of gene clusters will allow us to evaluate cluster significance more accurately and
more quickly, and to choose parameter values in a principled manner.

Our goal in this paper is to try to close the gap between rigorous mathe-
matical models and models used in the analysis of real genomes by developing
formal statistical tests for max-gap clusters. We first present an exact expres-
sion for the probability of observing a complete max-gap cluster containing all
m genes of interest within a randomly ordered genome of size n. We also provide
an approximation for faster analysis. Next we extend this analysis to evaluate
the probability of observing a cluster containing only a subset of the black genes.
We present a simple dynamic programming algorithm that exactly calculates the
probability of observing an incomplete cluster of size h < m, as well as an ana-
lytic solution for the case where h > m

2 . We then use these equations to calculate
the probability of clusters for a range of different genome sizes and parameter
values. We discuss the influence of the parameters n, m, g and h on cluster sig-
nificance and determine which regions of the parameter space yield clusters that
are statistically significant. Finally we discuss some of the challenges that arise
in extending this statistical model to whole-genome comparison.

2 Probabilities of Max-Gap Clusters

Our analytical tests of max-gap cluster significance are based on the probability
of observing a cluster by chance in a genome with random gene order, the most
basic null hypothesis we can consider. If we cannot reject that null hypothesis,
no more complex, biologically motivated null hypothesis need be considered.

When calculating the probability of max-gap clusters it will be useful to
know the number of ways of arranging m black genes to form a max-gap cluster
within a window of length l. When both endpoints of the window contain a black
gene the cluster will be of length exactly l and the problem is equivalent to a
well-known sum-of-dice combinatorics problem [64]. Let

dc(m, g, l) =
�(l−m)/(g+1)�∑

i=0

(−1)i

(
m − 1

i

) (
l − i(g + 1) − c

m − c

)
.

When c = 2, dc(m, g, l) corresponds to the the number of ways of rolling m − 1
dice, each with faces numbered 0 to g, such that the sum of their faces is equal to
l − m 1. This is equivalent to the number of ways of creating a max-gap cluster
1 This in turn is equivalent to the number of ways of rolling a set of m − 1 dice, each

of which has faces numbered 1 to g + 1, so that their cumulative sum in equal to
l − 1, due to Uspensky [64].
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of size m and length l since such a cluster has m−1 gaps with a cumulative sum
of l − m.

The number of ways of generating a cluster with length no greater than l is
equivalent to requiring that only one endpoint in the window contain a black
gene. This is simply:

∑l
r=m d2(m, g, r), which can be shown to be equivalent to

d1(m, g, l) (see the Appendix for the derivation). Similarly, the number of ways
of arranging m genes so that they form a max-gap cluster anywhere within a
window of size l is

∑l
r=m d1(m, g, r) = d0(m, g, l).

These expressions will be used in the subsequent sections in various situations
in which the length of a cluster is constrained. Note that an efficient implemen-
tation of dc can be obtained by pre-computing all necessary factorials, allowing
the entire summation to be computed in O(l) time.

2.1 Exact and Approximate Probabilities
for Complete Max-Gap Clusters

We begin by calculating the probability of observing a complete max-gap cluster.
More formally, given a random genome of size n, what is the probability of
observing all m black genes (in any order), such that the gap between adjacent
black genes does not exceed g. We determine the probability by counting the
number of ways to place all m genes in a genome of size n so that they form
a max-gap cluster. We enumerate the clusters by the position of the leftmost
black gene in the cluster. Given the position of the first black gene, there are
(g+1)m−1 ways to place the remaining black genes so that they form a max-gap
cluster, which is simply the number of ways of choosing m − 1 gaps so that the
length of each gap is between 0 and g. The maximum possible length of a max-
gap cluster is w = m + g(m − 1), and thus there are n − w + 1 ways of placing
the first black gene so that a cluster of maximal length can be accommodated.
In addition, the leftmost black gene could also be positioned within the w − 1
genes at the end of the genome. The number of ways of placing m black genes to
form a max-gap cluster in the last w−1 slots is precisely the quantity we derived
in the previous section. Combining these terms, the probability of observing a
complete max-gap cluster of m genes in a genome of size n is

PM (n, m, g) =
max(0, n − w + 1) · (g + 1)m−1 + d0(m, g, min(n, w − 1))(

n
m

) . (1)

When m � n, the total number of permutations can be approximated in
constant time using Stirling’s approximation, and then the complexity of com-
puting PM is simply O(w) = O(mg). Except when w ≥ n, the running time will
be independent of the genome size since the only calculation that is not con-
stant time is computing the number of ways of constructing a max-gap cluster
within the last w − 1 genes in the genome. When a more efficient running time
is required, we can construct a lower bound on the probability of observing a
cluster by simply eliminating the final term that takes edge effects into account.
We can compute an upper bound by instead assuming that all but the last m−1
positions in the genome can accommodate a cluster of maximal length:
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Fig. 2. Probability of a complete max-gap cluster of m black genes in a genome of size
n = 500 as a function of g (a), and as a function of m (b).

max(0, n − w + 1) · (g + 1)m−1(
n
m

) ≤ PM (n, m, g) ≤ (n − m + 1) · (g + 1)m−1(
n
m

) .

Both bounds can be computed in constant time using Stirling’s approximation
to estimate the denominator. We have verified empirically that when n is large
in relation to w, the upper bound is only a slight overestimate of PM (data not
shown).

In some cases we may wish to constrain the total length of the cluster, by
adding the restriction that all m genes must appear in a window of size at most
r. The limit on window size ensures a minimum cluster density, while the max-
gap property prevents the gaps between black genes from becoming too large.
More formally, given a genome of size n, the probability of finding all m black
genes (in any order) in a window of size at most r such that the gap between
adjacent black genes is never more than g, is simply

PMR(n, m, g, r) =
1(
n
m

) [(n − r + 1) · d1(m, g, r) + d0(m, g, r − 1)] ,

where we have replaced (g + 1)m−1 in Equation 1 with d1(m, g, r) in order to
constrain the maximum length of the cluster.

The probability of finding a complete cluster for varying values of n, m, and
g was calculated from Equation 1 using Mathematica. We selected parameter
values corresponding to the range of values seen in real analyses. For example, we
selected values of g ranging from 0 to 50, since typical values of this parameter
used in genomic analyses range from three in bacteria [60] to about thirty in
human [40]. We calculated probabilities for genomes sizes of 500, 1000, 5000,
20,000, and 25,000, corresponding to typical gene sets for bacteria, yeast, worm,
and higher eukaryotes like human and Arabidopsis. For complete clusters we
tested all values of m ranging from 2 to n.

Figure 2(a) shows the probability of observing a complete cluster containing
all m black genes in a genome of size n = 1000, as m ranges from 1 to 250 and
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Fig. 3. Region of the parameter space that is statistically significant (shown in black)
at the α = 0.0001 level for a genome of size 500. (a) Complete parameter space where
m ranges from 1 to 500. (b) Detail for m ≤ 50.

g increases from 2 to 50. The probability of finding a complete cluster increases
monotonically with g. We might also expect that this probability will increase
monotonically with m, but this is not the case. As Figure 2(b) shows, as m
increases, the probabilities first decrease and then increase. When m is small, a
small increase in the number of black genes will actually decrease the probability
of finding a cluster. This makes sense intuitively if ones considers the extreme
cases: when m = 1 or m = n the probability of finding a complete cluster
will clearly be 1, and the values of m in between these two extremes will have
probabilities of less than one.

One question of interest is the range of values of m and g for which is it
possible to obtain a significant cluster. Figure 3 shows the parameter values for
which the probability of observing a cluster in a genome of size 500 is no more
than 0.0001. The significant region of the parameter space is shown in black,
indicating that as gap size increases, the range of values of m for which it is
possible to obtain a significant cluster becomes more and more restricted.

As the genome size n increases the probabilities decrease but the general
trends seen in Figure 2 remain the same (data not shown).

2.2 Exact Probabilities for Incomplete Max-Gap Clusters

Requiring all m genes of interest to appear in a single cluster is often too strict a
requirement. In practice, researchers often look for clusters that contain a subset
of the genes of interest [1, 13, 19, 21, 30, 33, 34, 37, 39, 46, 48, 58, 59, 63]. Thus, we
relax the cluster definition to allow incomplete clusters of size at least h, for
h < m (maintaining the requirement that there is no gap greater than g be-
tween adjacent black genes). Unlike complete clusters, there can be more than
one incomplete cluster in the same genome. A simple extension of Equation 1 to
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incomplete clusters would therefore lead to overcounting permutations contain-
ing more than one cluster. Instead, we present a simple dynamic programming
algorithm to count those permutations which do not contain a cluster of size h
or larger, and subtract to obtain the probability of observing at least one incom-
plete cluster. The algorithm moves along the genome, adding a black or white
gene at each step. It keeps track of runs of black genes that satisfy the max-gap
cluster criterion and avoids creating a cluster of size h or larger by judicious
placement of white genes.

The quantity nH̄ [n, m, j, c] represents the number of ways to place m black
genes in n slots without creating a max-gap cluster of size greater than or equal
to h, where j is the distance to the previous black gene and c is the size of any
cluster created so far. It is defined recursively as follows:

nH̄ [n, m, j, c] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if c = h

0, else if n < m

1, else if m = 0
nH̄ [n−1, m, j+1, c] + nH̄ [n−1, m−1, 0, c+1], else if j ≤ g

nH̄ [n− 1, m, j+1, c] + nH̄ [n−1, m−1, 0, 1], otherwise.

The probability of observing at least one incomplete cluster of size at least h is
then just one minus the probability of containing no incomplete clusters

PH(n, m, h, g) = 1 − nH̄ [n, m, g + 1, 0](
n
m

) . (2)

The complexity of computing PH is O(nmgh). Since h < m, this is bounded
above by O(nm2g). However, in practice m will be significantly smaller than n.
For example, the size of typical bacterial genomes ranges from 500 to 5000 [57],
whereas the average number of genes in an operon is predicted to be between two
and four, and the large majority of operons contain fewer than fifteen genes [69].
Vertebrate genomes can be much larger. For example, the estimated size of the
human genome is around 25, 000 genes [32], but duplicated or conserved regions
reported in the literature tend to include only five to thirty genes in a window
containing a hundred genes at most [1, 13, 19, 21, 30, 33, 34, 37, 39, 46, 48, 58, 59,
63]. If we make the conservative assumption that m ≤ √

n and that g is a small
constant, then the running time will be bounded above by O(n2).

When h > m
2 , the probability can be computed directly because we do not

have to worry about overcounting genomes containing more than one cluster. We
count the number of permutations containing a cluster, enumerating them by
the position of the leftmost black gene in the leftmost cluster, just as we did for
complete clusters. Unlike the complete case, however, we have to be careful not
to overcount clusters of size greater than h. We accomplish this by considering
each possible cluster length (for the first h black genes in the cluster) individually
and placing g + 1 white genes before the start of the cluster to ensure that it
cannot be extended to the left. This yields a probability of finding an incomplete
cluster of size at least h of
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Fig. 4. Probability of an incomplete cluster of size at least h as a function of gap size
in (a) a genome of 500 genes with m = 10 black genes, (b) a genome of 1000 genes
with m = 50 black genes.

1(
n
m

) h+g(h−1)∑
l=h

[
(n − l − g) · d0(h, g, l) ·

(
n − l − g − 1

m − h

)
+ E

]
, (3)

where l ranges over all possible lengths of a cluster of size h and E is a term to
address edge effects. The first term is the number of positions in which to start
the cluster. The second term is the number of ways to choose the gaps to obtain
a cluster length of exactly l. The third term is the number of ways to place the
remaining m − h genes outside the cluster. The final term counts clusters close
to the beginning of the genome before which it is only possible to place i < g +1
white genes. It is calculated as

E =
g∑

i=0

d0(h, g, l) ·
(

n − l − i

m − h

)
= d0(h, g, l)

[(
n − l + 1
m − h + 1

)
−

(
n − l − g

m − h + 1

)]
,

where the binomials are defined to be zero when the upper value is smaller than
the lower value and the simplification is by application of the upper summation
identity [24]. The complexity of computing Equation 3 depends on the extent
to which sub-computations are reused, but empirically we observe that even a
naive implementation has a substantially faster running time than Equation 2
(data not shown).

We calculated the probability of finding an incomplete cluster from Equa-
tions 2 and 3 using Mathematica for the values of n and g given in Section 2.1.
We chose to examine values of m ranging from 3 to 250, which covers the range
of gene numbers found in typical reference regions of interest [1, 13, 19, 21, 30,
33, 34, 37, 39, 46, 48, 58, 59, 63], and values of h ranging from 3 to m/2. Figure 4
shows the probability of observing a cluster of a subset of 50 black genes in a
genome of size 500 for varying values of g and h. As the maximum gap size
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Fig. 5. Probability of observing a cluster that includes at least half of all m black genes
in a genome of size 500.

allowed increases, so does the probability of finding an incomplete cluster. In-
creasing the required size (h) of the cluster, on the other hand, decreases its
probability of occurring by chance. Figure 5 shows the probability of max-gap
clusters for varying values of m, where h = m

2 . As in the case of complete
clusters, the probabilities first decrease then increase with m. Finally, Figure 6
shows the region of parameter space for which it is possible to find a significant
cluster at a significance level of α = 0.0001, when m = 100, for genomes of size
n = 500 and n = 1000. Probabilities were also calculated for larger genome sizes
as in Section 2.1. Again, as n increases the probabilities decrease but the general
trends are similar (data not shown).

3 Discussion

The work presented here was motivated by the gap that currently exists between
mathematical cluster models and models used in analysis of real genomes. We
provide analytical statistical tests for max-gap clusters, a model widely used in
practice [5, 10, 38, 40, 45, 60]. We determine the probability of observing a max-
gap cluster containing a set of m pre-specified genes of interest, assuming a
genome with random gene order. We also consider incomplete clusters, where a
subset of the pre-specified genes satisfies the max-gap criterion. This scenario
corresponds to a reference-region approach in which a particular chromosomal
region in one genome is of interest, and another region containing a similar set
of genes is sought. We have presented exact expressions for the probabilities of
finding complete and incomplete max-gap clusters under this simple model. We
have also provided an efficient approximation for the probability of finding a
complete cluster, which is highly accurate when n is large in relation to mg.

Our calculations show that the probability of finding a cluster increases mono-
tonically with g, and that as the gap size increases, the range of values of m for
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Fig. 6. Region of the parameter space that is statistically significant (shown in black)
at the α = 0.0001 level for m = 100 black genes in a genome of size n = 500 (a) and
n = 1000 (b).

which it is possible to obtain a significant cluster becomes more and more re-
stricted. For a fixed value of m, increasing the required size (h) of an incomplete
cluster decreases its probability of occurring by chance. However, the behavior
of cluster probabilities with respect to m is more complex. There is a high prob-
ability that all m black genes will form a cluster when m is small in relation to
n, and this probability decreases as m grows larger. As m approaches n, how-
ever, the majority of genes in the genome will be black, and the probability that
they cluster together begins to increase again. This behavior is also observed for
incomplete clusters when h is chosen to be a fixed percentage of m.

The model considered here treats the genome as an ordered set of genes,
disregarding actual distances between genes. This assumption can be advanta-
geous because physical distances often differ substantially between organisms.
Furthermore, it eliminates the need to model the variation in gene density that
can lead to gene-rich and gene-poor regions of chromosomes. A distance-based
model would have to take into account the fact that a cluster that is surprising
in a gene-poor region might easily occur by chance in a gene rich region. How-
ever, since prokaryotic genomes tend to be gene dense, it would not be difficult
to modify the model used here to a model that explicitly considers distance for
bacteria. When analyzing clusters in bacterial genomes, statistical models that
take into account the orientation of genes and the possibility of circular instead
of linear chromosomes are also of interest. These extensions remain as future
work.

The current model also disregards the presence of tandem duplications and
gene families. Since tandem duplications can be detected easily in genomic data
due to their regular spatial patterns, they can be taken into account by a prepro-
cessing step in genomic analysis. Gene families are more problematic, however.
Virtually all genomes contain gene families, sets of genes with similar sequence
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and function, that arose through duplication of genetic material. Large gene
families will increase the likelihood of finding a conserved cluster by chance and,
hence, can have a large impact on the statistical significance of a particular
cluster. However, factoring gene families into an analytical statistical model is
difficult because the exact size of each gene family in a genome cannot be easily
determined.

An important open problem is the development of statistical tests for max-
gap clusters in whole genome comparisons. More formally, given two genomes
G = (g1,. . .,gn) and H = (h1,. . .,hn), and a mapping between homologs in G and
H , we wish to find all maximal max-gap clusters containing at least k homologs.

It is not obvious how to calculate max-gap cluster probabilities in the case
of whole-genome comparison because, unlike the abstraction of white and black
genes presented here, in whole-genome comparison there is no specific set of
genes that is of interest. Consider the simple model of whole genome comparison
in which the genomes are assumed to have identical gene complements, and can
therefore be treated as two permutations of the numbers 1, . . . , n. Although this
model appears quite natural, max-gap clusters found under this approach to
genome comparison have some surprising properties2:
1. Under this simple model of genome comparison with identical gene content,
there will always be a cluster of size n and hence, the probability of finding a
max-gap cluster of at least size k when comparing two genomes is always one.
For example, consider these two genomes:

G = 1 2 3 4 5 6
H = 3 4 6 5 1 2

Suppose we wish to find the largest max-gap cluster that can be formed around
gene 3, when g = 0. If we attempt to construct a cluster in a greedy fashion,
the cluster will only include genes 3 and 4. However, if we look ahead a bit, it
is possible to find the cluster [3 4 5 6]. In both genomes there are zero gaps
between these four genes. Extending this look-ahead idea, we can see that under
this model, regardless of the value of g, a pair of genomes always contain a max-
gap cluster of size n. Since n ≥ k, the probability of finding a cluster of size at
least k is one.

2. In the reference region model discussed in this paper, as well as the gene
cluster models of Durand and Sankoff [15] and Calabrese et al. [9], a cluster that
contains k genes will always contain at least one valid cluster of size each from
1 to k − 1. However, this property does not hold when applying the max-gap
cluster model to whole genome comparison. For example, consider the following
two genomes:

G = ... 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
H = ... 2 4 27 30 9 12 53 81 0 8 99 72 7 ...

2 Bergeron and colleagues [4] have made similar observations in the context of the
development of efficient algorithms for finding max-gap clusters, as opposed to the
statistical questions considered here.
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With a maximum allowed gap of g = 2, the size of the largest max-gap cluster
is seven: [0 2 4 7 8 9 12]. However, this cluster does not contain any valid
max-gap clusters of size three to six. Indeed, it contains only sub-clusters of size
two ([2 4], [9 12], and [7 8]).

This issue is related to point (1). There may be a higher probability of find-
ing a larger cluster than a smaller cluster. To see why this is the case, note
that increasing the size of the cluster essentially increases the maximum allowed
window size. As a result, as the size of the cluster sought increases, the number
of clusters found may grow substantially.

When looking for evidence of whole-genome duplication, a genome is com-
pared with itself, and the gene sets will indeed be identical. In the comparison
of two different genomes, however, point (1) will not be an issue, because gene
sets are never identical in practice. This problem can be partially addressed by a
more realistic model, where only a subset of the gene sets of the two genomes are
shared. We assume that only m genes in each genome have homologs in the other
genome, and the non-homologous genes are randomly distributed throughout the
genome. When g = 0, the non-matching genes will create a natural barrier to
unlimited extension of a cluster, preventing the formation of a max-gap cluster of
size m. However, if g is greater than the longest contiguous run of non-matching
genes then it will still be possible to form a cluster of size m.

Furthermore, this more realistic model does not circumvent the second is-
sue of non-monotonic cluster sizes. These two issues have implications for the
development of analytical statistical models of max-gap clusters found through
whole-genome comparison, and remain exciting problems for the future.
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A Derivation of d1(m, g, r) from d2(m, g, r)

In Section 2 we gave an expression d2(m, g, l) for the number of ways of arranging
m black genes into a max-gap cluster of length exactly l.

The number of ways d1(m, g, l) of arranging m black genes in a max-gap
cluster of length no greater than l is as follows:

l∑
r=m

d2(m, g, r) =
l∑

r=m

�(r−m)/(g+1)�∑
i=0

(−1)i

(
m − 1

i

) (
r − i(g + 1) − 2

m − 2

)
,

The r in the upper bound of the second summation can be replaced by l because
when i > �(r − m)/(g + 1)� the final binomial will be zero, which gives

l∑
r=m

�(l−m)/(g+1)�∑
i=0

(−1)i

(
m − 1

i

) (
r − i(g + 1) − 2

m − 2

)
.

Now the upper bound of the second summation is no longer dependent on r, and
so the outer summation can be moved inward:

�(l−m)/(g+1)�∑
i=0

(−1)i

(
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i

) l∑
r=m
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Rewriting the bounds of the inner summation gives:
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Decreasing the lower bound to r = 0 does not affect the probability because
when 0 ≤ r < m − 2 the binomial is zero. We apply the upper summation
identity [24] to eliminate the inner summation, which yields

�(l−m)/(g+1)�∑
i=0

(−1)i

(
m − 1

i

) (
l − i(g + 1) − 1

m − 1

)
,

which is exactly d1(m, g, r). The derivation of d0(m, g, r) from d1(m, g, r) is iden-
tical.
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Abstract. We describe a new method for reliably identifying conserved
segments among genome sequences that have undergone rearrangement,
horizontal transfer, and substantial nucleotide-level divergence. A Gibbs-
like sampler explores different combinations of sequence-based markers
shared by the genomes under study. The sampler assigns each marker a
posterior probability based on how frequently it participates in some
collinear group of markers. Markers with high p.p. values are likely
members of conserved segments. The method identifies both large-scale
and local trends in segmental collinearity, providing suitable input for
genome alignment and rearrangement history inference tools. Applying
our method to genomes of four Streptococci reveals that rearranged seg-
ments in these organisms belong in two size categories: large conserved
segments that are interrupted by a staccato of single gene or operon-size
small segments. The rearrangement pattern of large segments is best ex-
plained by symmetric inversions about the origin of replication while the
pattern of small segments is not.

1 Introduction

Nadeau and Taylor [1] introduced the concept of ’conserved segments’ when
comparing the genetic linkage maps of human and mouse. Conserved segments
are homologous regions between genomes in which common genetic markers oc-
cur in the same order. Twenty years later, comparison of the completed human
and mouse genomes found one third more large-scale rearrangements than pre-
dicted [2], as well as thousands of micro-rearrangements [3]. Similarly, the discov-
ery of a large inversion between E. coli and Salmonella typhimurium by genetic
analysis [4] spurred studies of genomic rearrangements in microbes. Pairwise
comparisons of sequenced eubacterial genomes later confirmed that symmetric
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inversions about the origin and terminus of replication are common in this do-
main [5, 6]. Such pairwise comparisons are easy to implement but provide only
limited analytical power, whereas multiple genome comparison enables the ap-
plication of more powerful phylogenetic methods.

We present a method to reliably identify conserved blocks of sequence among
several genomes that have undergone rearrangement. Our approach to rearrange-
ment identification relies on monotypic markers to suggest potential homology.
Monotypic markers are genomic features that occur exactly once in each genome
being compared. The order and orientation in which these markers appear can
be written as signed permutations of integers. Applying breakpoint analysis [7]
to these permutations separates the markers into disjoint subsets of collinear
markers. The regions of DNA spanned by the markers inside a given subset
form a locally collinear block, or LCB. Unlike the conserved segments originally
described by Nadeau and Taylor, LCBs are based solely on sequence similarity
and do not imply any type of common evolutionary history or biological sig-
nificance. In particular, LCBs make no distinction between segments that are
similar merely by chance and truly orthologous segments - segments whose sim-
ilarity derives from a single locus in the most recent common ancestor (MRCA).
Conserved segments are regions of strictly orthologous sequences [8] that may
contain lineage specific sequence, but do not contain rearrangements of orthol-
ogous sequence. By using marker order rather than the chromosomal proximity
of markers to assess segmental conservation, our method accommodates lineage
specific lateral gene transfer. Previous analytical tools were either limited to
closely-related taxa [9] or did not account for horizontal transfer events common
in bacterial genomes [3, 10].

Our target data set for this work consists of a group of four Streptococcus
species that have sufficiently diverged so that comparisons at the nucleotide level
are not practicable. We have shown in earlier studies [9, 11] that multi-MUMs
(multiple maximum unique matches) are simple and effective monotypic markers
for finding genomic rearrangements, but their applicability is limited to closely
related organisms. When comparing more distantly related genomes, exact nu-
cleotide matches such as multi-MUMs fail to generate a sufficiently comprehen-
sive set of monotypic markers. Various types of inexact matching algorithms
have been designed with DNA sequence in mind [12–15], but BLAST [16] hits
at the protein level remain one of the most sensitive and widely used pairwise
alternatives. In order to compare three or more annotated genomes, we define
a gene-based monotypic marker to consist of a single gene from each genome,
where each gene is the reciprocal best BLAST hit of the other genes comprising
the marker. Although our focus here is on gene-based marker sets, we present
the algorithm in full generality.

2 Notation

We start with a collection of G genomes G and M sequence-based markers M
such that each marker occurs once and only once in each g ∈ G. One genome,
denoted g1, is designated as a reference genome. In order to facilitate breakpoint
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determination, we assign an integer label to each marker based on the marker’s
order in g1 coordinates, i.e. the jth marker in g1 is labelled j. In other genomes,
mj may reside on the opposite strand, in which case that instance is labelled
−j. Hence, mj = ±j, depending on its orientation in gk relative to g1. Denote
the G labels of mj by φk(mj) = ±j. A signed permutation ζk is constructed
for each genome by sorting the M integers of φk(M) by their location in gk.
ζk thereby encodes the order and relative orientation of monotypic markers in
gk. Throughout, markers m are indexed by j or v, genomes g by k, and integer
elements z in ζk will be indexed by i. When it is clear from context, the marker
mj is denoted by its label j for ease of exposition.

An adjacency in ζ = (z1, ..., zi, ..., zM ) exists whenever zi+1 − zi = 1. Con-
versely, zi+1 − zi �= 1 indicates a breakpoint between markers i and i+1. Break-
points in ζ partition M into locally collinear blocks, groups of consecutively in-
creasing integers. For example, ζ = (1, 2, 3, 4, 5,−8,−7,−6, 10, 9,−13,−12,−11,
14) consists of six collinear blocks: {1, 2, 3, 4, 5}, {6, 7, 8}, {11, 12, 13}, and three
singletons: {9}, {10}, and {14}. Extension to three or more genomes is carried
out by stacking permutations on top of one another to create a G x M matrix
of integer-valued permutation elements: ZG(M) = (ζ1, ..., ζG)′. The breakpoints
of ZG(M) are the union of breakpoints from each row ζk. In this framework,
locally collinear blocks can be viewed as groups of consecutive integers that are
present in either orientation in every row.

Our MCMC algorithm utilizes this matrix representation to determine LCBs
“on the fly”. After locating the G instances of m in ZG(M), the algorithm quickly
identifies all surrounding collinear markers by scanning to the left and right of
m in all rows (genomes) simultaneously until the first breakpoint is encountered
in each direction.

The procedure can be formalized as follows. Let zk(mj) be the unique oc-
currence of mj in ζk. If i(mj , k) denotes the relative position of marker mj in
gk (equivalently, in ζk), then zk(mj) = z(k, i(mj, k)) in ZG(M). In particu-
lar, z1(mj) = z(1, j) = j. Define a shift operator θ on zk(m) by θh(zk(m)) =
z(k, i(m, k) + sgn(φk(m)∗ h). Hence, θh(zk(m)) is the hth marker to the right
or left of m in ζk. For h>0, shift h units to the right in ζk whenever m is located
on the same strand (i.e., φk(m) = 1) and h units to the left when m occurs on
the opposite strand. Reverse directions for h<0. Trivially, θ0(zk(m)) = zk(m).
The limits of collinearity about marker m = mj can be formulated as:

Lend(m : Z(M)) = j + minu≤0{j + h = sgn(φk(m))θh(zk(m))∀k, h : 0 ≥ h ≥ u}
Rend(m : Z(M)) = j + maxu≥0{j + h = sgn(φk(m))θh(zk(m))∀k, h : 0 ≤ h ≤ u}

In a sense, this can be viewed as a seed and extend method to identify LCBs.
The set of markers {mv : Lend(mj : ZG(M)) ≤ v ≤ Rend(mj : ZG(M))}
comprises the longest uninterrupted stretch of collinear, co-oriented markers
containing m. The need for explicit recognition of the dependence on ZG(M)
will become clear shortly.

First, we give an example consisting of fourteen markers in four genomes and
find the LCB containing m7.
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ZG(M) =

⎛
⎜⎜⎝

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 9 −8 −7 −6 −5 10 −13 −12 −11 14
1 2 −5 −4 −3 14 6 7 8 9 11 12 13 −10
6 7 8 9 1 2 3 4 5 10 11 12 13 14

⎞
⎟⎟⎠

For m = m7, z1(m) = 7, z2(m) = −7, i(7, 2) = 7, z3(m) = +7, i(7, 3) = 8, z4(4) =
+7 and i(7, 4) = 2. The first mismatch to the right of marker 7 occurs two
markers to the left of -7 in g2, where sgn(φ2(m))×θ2(z2(m) = −7) = −1×9 �= 9.
Hence, Rend(7) = 8. Likewise, breakpoints in g3 and g4 occur two markers to
the left of 7, so Lend(7)=6. Consequently, LCB(7) = {6,7,8}.

3 A Pseudo-Gibbs Sampler

Not all markers help define evolutionarily conserved segments among genomes.
On the contrary, some markers actually disrupt such segments. The problem is
to identify those markers that optimally segregate into conserved segments. We
attack the problem by surveying and assessing candidate subsets using Markov
chain Monte Carlo technology. Each subset of M can be represented by a vector
of M zeroes and ones, where a one in the jth position indicates that the jth marker
is included in the subset, denoted by Min. We call this representation a con-
figuration. In the previous example, the configuration (0,0,0,0,0,1,1,1,0,1,1,1,0)
corresponds to the subset Min ={6,7,8,11,12,13}. Denote the collection of lo-
cally collinear blocks of Min by L(Min) to emphasize the dependence on the
set of included markers Min. Here, L(Min) consists of two blocks: (6,7,8) and
(11,12,13). Two different configurations on M define distinct inclusion subsets
Min

1 and Min
2 . L(Min

1 ) and L(Min
2 ) are considered equal if their LCBs span

the same intervals in every genome (cf. Min= {6,8,11,13} for configuration
(0,0,0,0,0,1,0,1,0,1,0,1,0)).

We designed a pseudo-Gibbs sampler to explore the space of configurations
in search of well-supported subsets as follows. Assign random variables Xj that
map each mj into a state of inclusion (1) or exclusion (0). Hence, the random
vector X(M) = (X1(m1), . . . , XM (mM )) maps M into x = (x1, . . . , xM ), a
configuration of size M. Initialize X0(M) = x0 with a draw of M independent
Bernoulli(1

2 ) random variates. A Markov chain (X0,X1, . . . ,Xn, . . . ,XN) is run
over the space of configurations as follows. Pick a marker at random and compute
a score conditioned on the current configuration Xn = x. Then convert the score
to a “conditional probability” to stochastically update Xn+1

j (mj). The specific
formulae used are:

Score(mj | Xn = x) =
j−1∑
v=L

wvxv + max(λ(wj − wmin), 0) +
R∑

v=j+1

wvxv, (1)

where L =Lend(m : ZG(Min
n )) and R = Rend(m : ZG(Min

n ) as defined above,
wm is a marker’s weight, and λ and wmin down-weight the current marker.

p̂j =
eScore(mj)/c − 1
eScore(mj)/c + 1

, where c > 0 is a scale parameter. (2)
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Sample u ∼ Unif [0,1]. If u ≥ p̂j , Xn+1
j = 0, else Xn+1

j = 1. (3)

The score in (1) is the sum of the weights of all the collinear markers to the
left and the right of m in the current configuration x. When sets of markers
consist of exact sequence matches, the weight wm is simply the length of the
match. For gene-based markers, calculation of wm is complicated because every
pair of reciprocal best BLAST hits generates a different BLAST bit score. We
compute a gene-based marker’s weight wm as the square root of the average bit
score over all possible genome pairs. The square root transformation reduces the
distributional skew of large scores in long genes. The formula for the update
probability in (2) is the right half of a sigmoidal function.

For the analysis described here, LCBs consisting of one or two genes are
not particularly illuminating. In the case of phylogenetic reconstruction based
on rearrangements, they can lead to false inferences. Rather than summarily
exclude such blocks, their frequency can be minimized by down-weighting the
current marker in the score function. Subtracting a minimum weight offset wmin

suffices for nucleotide based markers, but with gene-based markers, an additional
multiplicative reduction is required (i.e. λ < 1).

The pseudo-Gibbs sampler iterates through these three steps tens of millions
of times. From a random start x0, the chain undergoes a burn-in period before
entering well-supported configurations. These early realizations are discarded. As
the Markov chain converges, some markers coalesce into collinear blocks because
markers within a collinear block contribute to each other’s scores. Counters
record the number of times each marker is updated and the number of times the
update is a one.

When the Markov chain has completed its pre-assigned number of iterations,
the relative frequencies of inclusion in Min are computed from the recorded
counts for each m. Had we a bona fide Gibbs sampler, in which the condi-
tional distributions were consistent with some joint probability distribution, the
Hammersley-Clifford theorem [17] and standard Markov chain Monte Carlo the-
ory [18] would guarantee that the relative frequency at each node converges to
the appropriate marginal posterior probability.

# of ones at mj

# of visits to mj
→ πj(c) = Pr(mj present in Mtrue | scale parameter c) (4)

Although not a true Gibbs sampler, experimental evidence indicates that the
pseudo-Gibbs sampler generates reproducible estimates of these marginals from
random initial configurations – an empirical proof of convergence. Note that the
dependence of the posterior probabilities on the scale parameter c is explicitly
recognized in the conditional probability notation.

A second user-provided parameter is the probability threshold γ. An appro-
priate choice of γ is determined empirically once the sampler has run its course.
Histograms of marginal posterior probabilities, such as the one below, suggest
that most markers are either isolated (p.p. near 0) or part of a larger block (p.p.
near one).
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Fig. 1. Histogram of posterior probabilities using the medium resolution settings in
Table 1 for a set of 938 gene-based markers present in four species. Discrimination is
typically more pronounced with nucleotide-based markers.

The relative frequencies in (4) induce a stochastic ordering on M. The
stochastic ordering ranks markers by the strength of the evidence that each m
joins with its neighbors to form a conserved segment. Recall that every configu-
ration partitions M into two disjoint subsets Min and its complement. Ranking
{πi(c)} forms a family of partitions Min(γ; c). Partitions of interest generally
involve thresholds between 0.25 and 0.75. Hence, only a few configurations need
actually be examined by the scientist.

Although ranking markers by their p.p. is a fairly robust procedure with
respect to the scale parameter c, it is far from invariant. Large values of c omit
small collinear blocks in favor of long blocks over large spans. Such runs are
called low resolution. Conversely, high resolution (small c) runs identify small
blocks that can disrupt larger low resolution blocks.

4 Results

Streptococcal strains are responsible for a wide range of diseases in humans. S.
pyogenes, most commonly associated with “strep throat”, also causes pneumo-
nia or rheumatic fever if untreated [19]. S. agalactiae is the leading cause of
pneumonia and meningitis in newborns [20]. S. pneumoniae [21] also causes of
pneumonia and meningitis, but has multiple phenotypes that distinguish it from
the other two species. Finally, S. mutans [22] is responsible for a large percentage
of tooth decay. More Streptococcal genomes (nine) have been sequenced than
any other genus. Although detailed comparative analyses have been conducted
within species [20, 23] little has been published about all four species beyond
pairwise contrasts (see [24] Table 3, [6] Supplemental material, and [20] Figure
2). Curiously, these previous analyses show that the smallest genome, S. pyo-
genes, and the largest genome, S. agalactiae, are the two most closely related
taxa. By contrast, S. pneumoniae is the most phylogenetically distant species.

We present an analysis of genome rearrangements among these diverse strains
using our pseudo-Gibbs sampler. To generate a set of monotypic markers, a recip-
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rocal best BLAST search was done between each pair of Streptococcal genomes,
retaining only matches with an E-value <0.00005 covering at least 50% of both
proteins. The distribution of common reciprocal best matches among the four
taxa are shown in Figure 2. Although 968 genes common to the four genomes
meet these criteria in all six paired comparisons, only 938 consist exclusively of
one-to-one matches within each comparison. This reduced group of genes, from
which putative gene duplications have been removed, forms a set of monotypic
markers. Given our stringent match criteria, most scientists would categorize
these genes as orthologs. We use these markers to investigate two complemen-
tary aspects of comparative genomics: identifying connected neighborhoods of
orthologous genes and inferring ancestral genome architecture. These two prob-
lems demand different levels of resolution to identify rearranged segments.

Fig. 2. This Venn diagram shows the partition of genes from all four Streptococcal
genomes into 15 groups of mutual reciprocal best BLAST hits. S. pneumoniae has the
most lineage-specific genes (458), while S. pyogenes has only 44 unique genes. Removing
paralogous genes leaves 938 monotypic markers common to all four species.

The scale parameter c divides the score (1), affecting the size of detectable
gene clusters. A smaller value of c generally improves sensitivity to small collinear
segments but may introduce additional noise. The threshold parameter γ par-
titions markers into signal and noise: markers with p.p.> γ are deemed signal
while the rest are considered noise. As mentioned above, γ is can be chosen by
inspecting the frequency distribution of posterior probabilities (see Figure 1).
Breakpoints in the selected set of signal markers define collinear segments of the
genomes under study.
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We begin with a search for clusters of orthologous genes. Since the introduc-
tion of clusters of orthologous groups, or COGs [25, 26], the concept has been
expanded to include connected gene neighborhoods [27, 28]. Typically methods
to construct gene neighborhoods start with triplets of genes, and inductively
work their way up to larger connected neighborhoods. Rather than growing a
neighborhood from a ’seed’ COG, our method directly identifies neighborhoods
as locally collinear blocks among the genomes. Statistical tests have been de-
veloped for assessing patterns of collinearity between two genomes [30, 29], but
they have not been extended to multi-genome analysis.

Our empirical approach permits us to indirectly modulate the minimum
neighborhood size by adjusting γ and c. Table 1 shows a series of runs on the
938 Streptococcus markers using different parameter settings to achieve low,
medium, and two high resolutions. In particular, observe that both 17-gene clus-
ters are split into smaller LCBs at high resolution.

Table 1. Distribution of gene counts per collinear segment. Clusters are determined
under three different conditions ranging in resolution from high to low. As the resolution
increases, some large clusters split into smaller clusters by the emergence of a previously
unnoticed intervening cluster.

Number of Segments (LCBs)

Genes per segment 2 3 4 5 6 7 8 9 10 11 13 14 17 18 24 Total
Resolution parameters

(c, γ, wmin)

Low (75,45%,20) 1 2 1 6 2 5 3 1 2 1 2 26
Medium (30,45%,8) 3 5 6 2 6 1 4 1 1 2 1 2 34
High-1 (20,50%,15) 1 4 20 7 7 2 6 2 3 1 2 1 2 57
High-2 (20,30%,15) 3 11 29 7 7 2 6 1 3 1 2 1 2 72

The four runs in Table 1 use a score function where the current marker’s
weight is reduced 25 %. The role of λ in (1) is apparent when the medium
resolution run in Table 1 is repeated without it (i.e. λ = 1) and the runs are
compared. The number of LCBs jumps from 34 to 109, including 20 singletons
and 15 pairs. Several large blocks are split into smaller segments, contributing
to the increase while obscuring the underlying pattern of collinearity.

The same phenomenon can occur if γ is lowered. We present a particularly
interesting example in Figure 3, magnified so genes can be represented as rect-
angles of varying length rather than points.

The large black collinear region in Figure 3 merits special attention. The
smallest gene contributing to this segment is the ribosomal protein L34. At the
lower threshold, L34 becomes isolated by the group of genes immediately to its
right in S. pneumoniae, labeled “four gene cluster”, and the dltDCAB operon
to its left in S. agalactiae. Note that the largest genome, S. agalactiae, has the
fewest number of lineage-specific genes within this segment.

We applied GRIMM [34] and MGR [35] to infer the ancestral genome or-
ganization of the four stains. Our initial analysis used high resolution collinear



80 Bob Mau, Aaron E. Darling, and Nicole T. Perna

S. agalactiae 
  1740k  1750k  1760k  1770k  1780k  1790k  1800k  1810k  1820k  1830k

S. pneumoniae 
TIGR4

 
 1870k  1880k  1890k  1900k  1910k  1920k  1930k  1940k  1950k  1960k  

S. mutans UA159
 250k  260k  270k  280k  290k  300k  310k

S. pyogenes M1 GAS

 150k  160k  170k  180k  190k  200k  210k  220k  230k  240k

      L34

 330k  340k

  dltDCAB

4 gene cluster

      L34

 320k

Key: Genes 4-way markers LCBs with  = .45 LCBs with  = .25

2603V/R

 290k

Fig. 3. A 100 kb region of S. agalactiae and the corresponding regions in the other
three Streptococcus genomes. Meaning of rows within genome panel, starting at the
bottom: genome coordinates, annotated genes (in black) with vertical position denot-
ing transcriptional direction. Monotypic gene markers are drawn as white boxes with
heights proportional to their posterior probability. Lines among the genomes connect
clusters of markers that together comprise a large LCB. Other markers are outside
the field of view in at least one genome and thus connecting lines can’t be drawn.
Black bars across the top denote LCBs formed from the medium resolution settings
in Table 1. Lowering γ to 0.25 interjects small segments that break up the large black
block.
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Fig. 4. X-plots of the 938 common orthologs, with each gene’s position in S. agalactiae
on the horizontal axis plotted against the corresponding position in each of the three
other strains. Many putative orthologs do not meet the p.p. threshold at low resolution,
and are drawn in grey. Genes above the threshold are black. In (c), and to a lesser degree
in (b), collinear segments near the center of the X-plot are visible in grey. This suggests
that certain orthologs may be collinear in some genomes, but not in all four.
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segments from Table 1. The rearrangement scenarios suggested by MGR on high
resolution segments do not maintain replichore balance, indicating that some of
the collinear segments in this data set may not have been rearranged by symmet-
ric inversions (data not shown). We then examined the 26 segments in the low
resolution run. Markers that exceed the p.p. threshold tend to cluster about the
diagonals of the X-plots shown in Figure 4, a pattern consistent with multiple
symmetric inversions.

Using the 26 low-resolution segments, we ran GRIMM and MGR again. The
result is a collection of 37 inversion events that maintain replichore balance
among genomes (data not shown). Figure 5 shows a phylogenetic tree based on
inversion events with branch labels giving the number of inversions per branch.
Unlike some other comparisons [36], the frequency of genomic rearrangements
between Streptococci appears to correlate well with the overall level of sequence
divergence.

Fig. 5. Phylogeny of Streptococcal strains based on a parsimonious set of 26 genomic
rearrangements of large segments, courtesy of MGR and GRIMM. The number of
inversions along each lineage accompanies the branch. The circle denotes the ancestral
genome of S. pyogenes and S. agalactiae; the rectangle is the ancestral genome of the
circle and S. mutans.

The comparison among these four Streptococci allows us to infer the ancestral
organization of the MRCA of S. agalactiae, S. pyogenes., and S. mutans, by using
S. pneumoniae as an outgroup. A separate 3-way analysis could be conducted
for the MRCA of S. agalactiae and S. pyogenes with S. mutans as the outgroup.

5 Discussion and Conclusion

By assigning posterior probabilities to monotypic markers our algorithm assists
in making a “best guess” as to which LCBs constitute evolutionarily conserved
segments among a group of genomes. Once identified, such conserved segments
can be subject to further analyses such as multiple global alignment or phy-
logenetic inference of genome organization. Furthermore, the flexibility of our
algorithm makes it well suited to comparisons of both eukaryotic and prokary-
otic genomes. By using markers based on inexact protein or nucleotide sequence
matches the algorithm accommodates significantly diverged genomes, and its
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ignorance of distance between markers allows it to be applied to genomes with
significant lineage-specific content.

In eubacteria, the origin and terminus of replication divide a circular chromo-
some into two replichores of similar length. Equal sized replichores are thought
to maximize efficiency of replication of the genome and an imbalance of more
than 20% can be selected against [31]. It is currently believed that symmetric
inversions are the predominant means of genome rearrangements in eubacteria
[5, 6, 32]. GRIMM and MGR implement sorting by reversals for circular chromo-
somes without any constraint on the replichore sizes of ancestral intermediates.
As such, these tools are not appropriate when small clusters of orthologous genes
are included – if in fact they were translocated by some other means [33]. We
stress that it is the scientist’s responsibility to judge whether such tools provide
a useful analysis of a given bacterial data set.

If inversions are not responsible for all such “micro-rearrangements”, other
evolutionary mechanisms must be. One explanation for the observed micro-rear-
rangements is transposition mediated by insertion sequences. An alternative ex-
planation is parallel lateral gene transfer events, acting independently to in-
troduce the same DNA to different loci in each lineage. This phenomenon is
called convergent evolution. A related mechanism is serial evolution - a horizon-
tal transfer of DNA into one lineage followed by a transfer from that lineage to
a second one. A fourth possibility would be ancient gene duplication and subse-
quent loss of the original gene copy. Attributing the mechanism responsible for
a particular micro-rearrangement remains an open problem.
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Abstract. In the first part of this paper, we investigate gene orders
of closely related mitochondrial genomes for studying the properties of
mutations rearranging genes in mitochondria. Our conclusions are that
the evolution of mitochondrial genomes is more complicated than it is
considered in recent methods, and stochastic modelling is necessary for
its deeper understanding and more accurate inferring. The second part is
a review on the Markov chain Monte Carlo approaches for the stochastic
modelling of genome rearrangement, which seem to be the only com-
putationally tractable way to this problem. We introduce the concept of
partial importance sampling, which yields a class of Markov chains being
efficient both in terms of mixing and computational time. We also give
a list of open algorithmic problems whose solution might help improve
the efficiency of partial importance samplers.

1 Introduction

The idea that differences between the gene orders of two genomes can be used as
a measurement of evolutionary distance was proposed more than six decades ago
[1]. It was rediscovered in the eighties [2], and since then a large set of papers on
optimisation methods for genome rearrangement problems has been published.
However, except the case of sorting signed permutations by inversions [3–7] or
by translocations [8], only approximations [9–13] and heuristics [14] exist. Most
of the methods concerning with more types of mutations either penalise all the
mutations with the same weight [12], or exclude a whole set of possible mutations
due to a special choice of weights [11].

The principle of choosing solutions by minimising the amount of evolution is
also called parsimony and has been widespread in phylogenetic analysis. Over
the last two decades the parsimony method of phylogenetic reconstruction has
been severely criticised and lost terrain to methods based on stochastic modelling
of evolution [15, 16]. Statistical methods give not only more consistent estima-
tions, but also the possibility of hypotheses testing and goodness-of-fit testing
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of the underlying model. Therefore it is a natural attempt to develop statistical
methods also for genome rearrangement.

Recently a few papers were published on probability models of genome re-
arrangement. Two of them considered only inversions [17, 18], and a third one
worked on multi-chromosomal genomes rearranged by both inversions and trans-
locations [19]. We also started a Bayesian approach to the genome rearrange-
ment problem considering insertions, transpositions and inverted transpositions
in unichromosomal genomes [20, 21]. As we will explain it in detail in Section 4,
all of these methods have the same computational concept: instead of analyt-
ical solutions, they apply a Markov chain Monte Carlo (MCMC) converging
to the distribution defined by the underlying stochastic model. Samples from
this Markov chain estimate statistics of interest like the posterior distribution of
number of mutations happened, evolutionary parameters, etc.

All the underlying models used so far in genome rearrangement problems
are relatively simple, and an obvious way to achieve further improvements on
this methodological line is to improve models describing the evolution of gene
orders. We will focus on Metazoa mitochondrial genomes for several reasons. Mi-
tochondrial genomes are unichromosomal circular genomes consisting of usually
13 protein coding genes and 24 RNA genes. This gene content as well as the
genes themselves are very conservative. Each gene is represented in one copy ex-
cept a very few cases that helps to identify homologous gene pairs. Mitochondrial
genomes are very compact lacking introns and transposons, which are known to
influence the rate of mutations rearranging genomes. Previous results showed
that there were no selection on any particular gene order in mitochondria.

The large amount of available mitochondrial genome data allows the inves-
tigation of closely related genomes. Our aim is to reveal elementary steps of
the evolution of gene orders. In Section 3, we report our findings based on the
investigation of the NCBI database on gene orders in mitochondria, and we re-
view previous hypotheses, too. In Section 4, we describe a general framework
for modelling the dynamics behind the evolution of gene orders in mitochondria.
Efficient computation in biologically more realistic models needs a core logic
being significantly different from that used in optimisation methods. We give a
list of open algorithmic questions related to this framework to demonstrate that
Markov chain Monte Carlo is not a boring technique but a source of interesting
computational problems. In Section 5, we discuss how similar research could be
conducted on bacterial or nuclear genomes.

2 Mathematical Description of Genome Rearrangement

We consider that two genomes have the same gene content, each gene is rep-
resented in one copy in both genomes. We describe their gene orders as signed
permutations, numbers correspond to genes, signs represent the reading direction
of genes. Based on elementary group theory, a series of mutations transforming
a genome π1 to genome π2 also transforms a permutation π−1

2 π1 to the identical
permutation. Therefore we will always consider sorting permutations, namely
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transforming a permutation into the identical one. For circular genomes, we
choose an anchor gene being in position 1 and having a positive sign. On the
NCBI database, this is the NADH dehydrogenase subunit 1. It is easy to show
that the rest of the genome mimics the evolution of a linear genome, hence the
genome rearrangement problem of circular genomes having n genes is equivalent
with the genome rearrangement problem of linear genomes with n−1 genes. We
will talk about linear signed permutations in the rest of the paper. We follow the
convention representing a signed permutation of length n as an unsigned per-
mutation of length 2n, we replace +i with 2i− 1, 2i, and −i with 2i, 2i− 1. This
unsigned permutation is then framed to 0 and 2i + 1. Only segments [2i + 1, 2j]
are allowed to mutate in the unsigned representation.

Starting with 0, we connect every other position in the permutation with
a straight line, and starting also with 0, we connect every other number of the
permutation with an arc. We consider the permutation as a graph, called graph of
reality and desire, whose vertexes are the numbers from 0 to 2n+1, and edges are
the straight lines and arcs. The permutation can be unequivocally decomposed
into cycles. Following the convention, we call the straight lines black edges or
reality edges, and arcs are named grey edges or desire edges. A black edge is a
breakpoint if its cycle is longer than a black edge and a grey arc. The breakpoint
distance between genomes π1 and π2 is the number of breakpoints in π−1

2 π1.

3 Inferring Closely Related Mitochondrial Genomes

To date, 466 fully sequenced Metazoa mitochondrial genomes have been pub-
lished in the NCBI database yielding 140 different gene orders. For these 140
genomes, all pairs of genomes were compared. Compared pairs were sorted based
on their breakpoint distance. Results can be downloaded form the World Wide
Web, http://www.stats.ox.ac.uk/˜miklos/metazoa.tar.gz.

Among the
(
140
2

)
= 9730 comparisons, 36 have 0 breakpoint distance. Al-

though these pairs have different gene content, the intersection of genes have the
same order. All of the genomes in these comparisons belong to the Vertebrata
phylum.

A breakpoint distance 1 is mathematically impossible. We found 72 genome
pairs having breakpoint distance 2. Remarkably, 70 of them are caused by in-
versions of a single gene. In all of these cases, the inverted gene was a tRNA
gene. One of the long insertions is two long (Pollicipes polymerus vs. Tetraclita
japonica), and the second one is eighteen long (Pisaster ochraceus vs. several
urchins having the same gene order).

Breakpoint distance 3 is always caused by a transposition, an inverted trans-
position or two adjacent inversions. We found 146 comparisons with breakpoint
distance 3. Several of these pairs differ in a swap of two adjacent genes. A frequent
pattern is a transposition of a single gene that is moved far from its original place.
There are several cases for inverted transpositions, even a two long fragment can
be inverted, for example Caelorinchus kishinouyei vs. Gonostoma gracile. Re-
markably again, we did not found any transposed fragment longer than two. Two
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adjacent inversions acting on neighbour tRNA genes coding cystein and tyrosine
might also cause a breakpoint distance 3 in several vertebrates.

The first really interesting breakpoint distance is 4, because it cannot be
caused by a single inversion, transposition or inverted transposition. In terms
of such mutations it might be the result of two non-adjacent inversions or two
mutations having a common black edge, of which at least one of them is a trans-
position or inverted transposition. Surprisingly, behind almost half of the break-
point distances 4 we can see the later configuration (40 from 93). In most of these
surprising cases, the pattern can be described with a transposition followed by
the inversion of a single gene at one of the ends of the inverted fragment. If mu-
tations happened independently we would see about one tenth of the inversion-
transposition pairs connected (recall that the vast majority of inversions acts
on a single gene). We can say that connected inversion-transposition pairs are
more frequent than we would expect considering independence, 35 connected
pairs versus 121 independent pairs having breakpoint distance 5. However, it
is hard to elaborate statistical significance, since genomes were not sequenced
randomly but based on biological interest, hence we have a biased sample. In
all cases, the common black edge was in the vicinity of a control region. It has
already been reported that genome rearrangements are more frequent around
the control region [22].

We show two examples on Fig. 1. A transposition and an inversion separates
the O. bicirrhosum mitochondrial genome from several bird genomes. Next to
the common point of the two mutations lies the control region in both genomes.
Fig. 1b shows genome rearrangements between ticks I. hexagonus and R. san-
guineus. In R. sanguineus, a new control region has emerged. This new CR
clearly attracts mutations.

We must mention that there might be mutations increasing significantly the
breakpoint distance. Boore proposed a duplication-loss model a few years ago
[22]. In this model, a part of the genome is duplicated, and after the duplication,
one copy of all gene pairs are eliminated. Boore found an excellent example
strongly supporting this model. In primitive Holothuroidea, a set of 15 tRNA
genes can be found in one part of the mitochondrial genome. In Cucumaria, 9
of them stay in the same place, while six of them moved to another part of the
genome. Only a couple of these six were adjacent in the original rearrangement,
however, all of them kept the reading direction and their relative order. Moreover,
several nonassignable nucleotides can be found in Cucumaria exactly at those
places where unused genes are being eliminated.

We might conclude that all the three classical mutation types (inversions,
transpositions and inverted transpositions) occur during the evolution of mito-
chondrial gene orders, and these mutations usually act on short segments and
they are frequently correlated. The correlation is suspiciously caused by control
regions. Other type of mutations should be also considered. A duplication-loss
model was already published, a type of mutation that can cause significant in-
crease of breakpoint distance in one step. Since there is a selection pressure
keeping mitochondrial genomes very compact, the speed of gene loss should be



Genome Rearrangement in Mitochondria and Its Computational Biology 89

 

+n5 +cb +T -P -n6 -E CR

+n5 -n6 -E +cb +T +P CR

-M +Q -I CR1 +sr +V +lr +L1 +L2 +n1 -S2 -cb -n6 +P -T +4l +n4 +H +n5 +F -E

-M -C CR2 +L1 +S2 -cb -n6 +P -T +4l +n4 +H +n5 +F +Q -I CR1 +sr +V +lr +L2 +n1 -E

several birds

O. bicirrhosum

I. hexagonus

R. sanguineus

a)

b)

Fig. 1. Genome rearrangement between a) several birds and Osteoglossum bicirrhosum
and b) ticks Ixodes hexagonus and Rhipicephalus sanguineus. Arrows show transposi-
tions, circles show inversions of single genes, arrow with a twisted arrow on it indicates
inverted transposition. This transposed and inverted tRNA-Cys gene originated from
a region not shown in the figure. Abbreviations: n1, n4, n5: NADH dehydrogenase
subunit 1, 4 and 5; sr: 12S rRNA; lr: 16S rRNA; CR, CR1, CR2: control regions; tRNA
genes are denoted by the one-letter amino acid abbreviation.

very fast, and the entire scenario can be modelled as a single mutation happening
in infinitesimally small time.

All these findings might question the usefulness of methods considering only
inversions. In the next section, we give a review on more complicated models
for genome rearrangement and their computational properties. We do not have
definite solutions on how to treat duplication-loss events, but we describe an
approach which might be fruitful for correlated mutations.

4 Stochastic Modelling of Genome Rearrangements

4.1 Time-Continuous Markov Model

Time-continuous Markov models have been the standard approach for stochastic
modelling of molecular evolution. In case of genome rearrangements, points in
the state space of the Markov model are the possible gene orders. The number of
these points grows with the factorial of the number of genes, therefore the brute
force calculation working fine for example for substitution models of nucleic acids
is computationally intractable here. What we can calculate is the likelihood of a
trajectory, which is the probability that a given sequence of mutations happened
in a time span conditional on a set of parameters describing the model. It is easy
to find a closed form for this likelihood when the sum of the rates of mutations
does not depend on the actual state [20, 23], it is

e−tr×t

∏l
i=1 rit

l!
(1)
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where tr is the sum of rates of all possible mutations at each state (total mutation
rate or exit rate, see [23]) t is the spanning time of the trajectory, ri is the rate of
the ith mutation, and l is the length of the trajectory. The exit rate always keeps
constant when we work on unichromosomal genome, insertions and deletions are
excluded and mutations happen independently. Durrett et al. recognised that
the sum of rates changes along the trajectory for multi-chromosomal genomes,
and they introduced pseudo-events to maintain the constant total rate along the
trajectory [19]. When the rate of mutations depends on the positions of previous
mutations, the sums of rates are changing along the trajectory, since different
mutations act on different number of positions, and hence in biologically more
realistic problems, we will face with the same problem, even for unichromosomal
genomes. Duplications and deletions or emergence of a new control region also
cause the exit rate changing. The approximation introducing pseudo-events is
not necessary, since exact likelihood values can be calculated even when the
sum of the rates are varying with states of the Markov model. However, exact
calculations need more computational time, the state-of-the-art algorithm [23]
calculating trajectory likelihoods runs in O(l2) time, where l is the length of the
trajectory, namely, the number of states in it.

4.2 Metropolised Partial Importance Sampler:
A New MCMC Strategy

The aim is to sample trajectories with probabilities proportional to their likeli-
hood, and this can be done by using Markov chain Monte Carlo (MCMC) [24,
25]. In all of the published methods, an update in the Markov chain replaces a
part of the trajectory. The proposal for the new sub-trajectory is drawn from a
distribution that mimics the target distribution we would like to sample from,
and the new proposal is independent from the old sub-trajectory. We call this
strategy Metropolised Partial Importance Sampler [21]. The success of such a
sampler is based on how well we can approximate a target distribution in small
dimensions. Here the target distribution is the posterior distribution of trajec-
tories given two genomes that the trajectories should connect. If genomes are
close to each other, trajectories are short (low dimension). When we resample
short sub-trajectories, the two rearrangements at the ends of the sub-trajectory
are similar.

The discrepancy between the proposal and the target distribution is corrected
by accepting the proposal with probability

min
{

1 ,
P (X |Y )π(Y )
P (Y |X)π(X)

}
(2)

where P is the proposal distribution, π is the target one, X is the actual state
of the chain, and Y is the proposal, and the chain remains in state X with
the complement probability. The probability in Equation 2 is known as the
Metropolis-Hastings ratio [24, 26]. The beauty of MCMC is that whenever the
Markov chain based on the proposals is ergodic on the state space of the target
distribution, and
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P (X |Y ) > 0 if and only if P (Y |X) > 0 (3)

the Metropolis-Hastings ratio transforms it into a chain converging to the target
distribution. However, the convergence might be very slow, and a slow conver-
gence also implies high correlation between neighbour points of the chain. From a
computational point of view it is also important question how much time it takes
to get a proposal and to calculate the Metropolis-Hastings ratio. We are going to
discuss both mixing and computational properties of Markov chain Monte Carlo
for genome rearrangement.

Mixing of Markov Chains. For fast convergence and good mixing, the pro-
posal distribution should be selected carefully. An ideal proposal distribution
has low dependence on the actual state and yields Metropolis-Hastings ratios
always close to 1. Indeed, if the proposal did not depend on the actual state of
the chain and the Metropolis-Hastings ratio was always 1, namely, if

P (Y |X) = P (Y ) = π(Y ) (4)

then the Markov chain would consist of independent samples of the target dis-
tribution. (Although a sampler might be super-efficient having smaller sampling
variance than that of independent sampling [25], we will not discuss it here.)
The proposed sub-trajectory does not depend on the removed one, therefore
the dependency of the new trajectory correlates only with the length of the
sub-trajectory being resampled. From this point of view, resampling long sub-
trajectories seems to be a good idea. On the other hand, we can sample from
a distribution only approximating the target one. The overlapping of the pro-
posal and target distributions will obviously decrease with the length of the
resampled sub-trajectory causing small Metropolis-Hastings ratio, and hence,
small acceptance ratio. An additional observation is that the proposed and orig-
inal sub-trajectories might have different length, therefore all possible length for
sub-trajectories should be proposed to satisfy Condition 3. We conjecture that it
is very hard to prove that a particular type of distribution is better than another
for the purpose. However, several types of distributions were used successfully in
the literature [18, 20]. Due to the trade-off between dependency in the Markov
chain and acceptance ratio, there should be an optimal expected length of the
resampled sub-trajectory for which the acceptance ratio is still sufficiently high,
while on the other hand, the autocorrelation of the samples got small. The dis-
tribution can be optimised in preliminary performance studies [18].

The mixing of the Markov chain also depends on how well the proposal distri-
bution can mimic the target distribution. Published methods propose new paths
step by step. They measure the departure of the actual rearrangement from the
rearrangement which the sub-trajectory must arrive to, and propose a mutation
which decrease the measurement of the departure (’good’ mutations) with high
probability and propose other ones (’bad’ mutations) with low probability. This
philosophy seems to be essential, since random mutations would reach the tar-
get rearrangement with a very small probability. Based on the measurement of
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goodness of mutations, there are several possibilities to propose good and bad
mutations differing also in the amount of computational time needed. We are
going to discuss them below.

Efficiency of Sampling Sub-trajectories. The inversion distance problem
is one of the few problems in genome rearrangement which has polynomial time
solution and has been most intensively investigated [3, 4]. It is also possible to
enumerate all sorting inversions, namely, inversions decreasing the inversion dis-
tance [7]. Similarly we can enumerate inversions that do not change or increase
the inversion distance. An obvious strategy uses these enumerations for sam-
pling sub-trajectories [17]: it samples a sorting inversion with high probability
(uniformly among them), and non-sorting inversion with small probability. How-
ever, the running time for sampling a mutation grows with Ω(n2), where n is
the number of genes, hence it gets inefficient for large genomes.

An alternative strategy distinguishes inversions based on how they change
the number of cycles in the graph of desire and reality [18, 20]. We distinguish
three groups of inversions, +1-, 0- and −1-inversions, based on whether they
change the number of cycles by 1, 0 or −1, respectively, see Fig. 2. A sampling
strategy samples uniformly inside the three group, but the group of +1-inversions
with high probability, and with decreasing probability the groups of 0- and −1-
inversions. Although we know that an inversion increasing the number of cycles
is not necessarily a sorting inversion, it is still a good measurement, since the
identical permutation has n + 1 cycles, where n is the number of genes, and all
other rearrangements have less cycles. The advantage of this strategy is that we
can calculate the number of inversions in each group in linear time:

#1-inversion =
k∑

i=0

(l(ci) − p(ci)) p(ci) (5)

#0-inversion =
k∑

i=0

(
l(ci) − p(ci)

2

)
+

(
p(ci)

2

)
(6)

# − 1-inversion =
(

n + 1
2

)
−

−(#1-inversion) − (#0-inversion) (7)

where k is the number of cycles, l(ci) is the length of cycle ci, and p(ci) is the
number of positive black edges of cycle ci, that is the number of black edges one
passes left to right on a tour of the cycle [20].

In an earlier work [20], we sampled inversions with the rejection method [27,
25], namely, we sampled an inversion uniformly, and if it was an inversion of the
prescribed type, we accepted it, otherwise we rejected and drew a new sample till
success. It is also possible to sample inversions of a prescribed type in a running
time growing linearly with the number of genes [21], which turns out to be more
efficient in practise. For example, we sample +1-inversions in the following way.
We create a list of positive and negative edges for each cycle. We first sample
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Fig. 2. How an inversion changes the number of cycles in a permutation. Note that
each dashed line represents a path connecting two ends of black lines, which is not
necessarily a single arc. A +1-inversion acts on two black edges of a cycle having
different orientation. A −1-inversion acts on two cycles. A 0-inversion acts on two
edges of a cycle having the same orientation.

a random cycle with a probability proportional to the number of +1-inversions
acting on it, and then we choose a random positive and a random negative edge
of this cycle uniformly. These two edges define the sampled +1-inversion. Due
to the weighted sampling of cycles, the procedure guarantees uniform sampling
on all +1-inversions. Similar strategies exist for uniform sampling of 0- and −1-
inversions.

Sampling transpositions and inverted transpositions is not so well elaborated.
Only one strategy is known, it distinguishes +2, +1 transpositions and inverted
transpositions, and treats all the rest in the same way [20]. +2- and +1-mutations
are listed, and sampled using this list, while other mutations are sampled with
the rejection method. +2- and +1-transpositions and inverted transpositions act
always on one cycle, and the enumeration investigates all the possible triplets of
edges in all cycles. Although the running time for this sampler grows with the
number of genes cubed in the worst case, in practise it is still fast, since long
cycles are rare, especially when we resample short sub-trajectories. However, a
better sampling strategy would be a great advantage.

It is not enough to somehow sample mutations from a reasonable distribution,
but proposal and back-proposal probabilities (P (Y |X) and P (X |Y )) should also
be calculated. The rejection method is a good example that a sampling strategy is
not necessarily able to calculate sampling probabilities. Sampling with rejection
is always coupled with an algorithm enumerating the size of the set we are
sampling from to get sampling probabilities. Therefore we need a thinking that
might be unusual in optimisation strategies to improve present techniques in
stochastic modelling: we need reasonable measurements for the goodness of a
mutation which can be sampled fast, as well as we should be able to calculate
proposal and back-proposal probabilities. In the next section we are going to list
some open algorithmic problems.
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4.3 Open Problems

Propose Transpositions in Sub-cubic Time. The state-of-the-art algorithm
needs O(n3) time to propose a transposition from a reasonable distribution,
where n is the number of genes in the genome. Can it be improved? Is there
other distributions for which a faster strategy exist? Distinguishing transposi-
tions based on the number of breakpoints they remove might be a promising
way.

Polynomial Proposal for the Duplication-Loss Model. There are expo-
nentially many possible duplication-loss events. How can we characterise good
mutations and how can we efficiently sample from them?

Sub-squared Time Calculation for the General Trajectory Likelihood.
Can we calculate trajectory likelihoods faster than Θ(n2) time?

Reusing Information During Sub-trajectory Proposal. Can we update
efficiently auxiliary variables storing information about cycle decomposition,
number of different type of mutations, etc. during sampling trajectories using
informations about the previous mutation sampled?

5 Discussion

Most of the methods in the scientific literature consider inversions, transpositions
and inverted transpositions as elementary mutations rearranging genomes [28].
In this paper, we investigated mitochondrial genomes to get a better picture
what elementary rearrangment events really are. We found all the tree types
of mutations mentioned above, and we also showed that short rearrangements
are frequent and mutations are not independent. The dependency is very likely
caused due to the increased mutation rate around the control region.

In the second part of this paper, we gave an overview on recent progress
in stochastic modelling genome rearrangement. Available techniques provide a
partial solution how to incorporate more prior knowledge into the models to
improve them. We can introduce different rates for different length of mutations
as well as different rates for mutations acting around the control region without
any problem, since they do not change the exit rate. Dependency on the acting
points of the previous mutation does change the exit rate, since transpositions
act on three black edges of the breakpoint graph, while inversions act only on
two. An interesting problem would be to change samplings such that dependent
mutations are proposed more frequently, but changing the likelihood calcula-
tions on its own enough to get a Markov chain converging to the desired new
distribution. Modified likelihood calculations need increased running time, and
this might be a drawback when trajectories are long.

Introducing dependency between mutations would be a simple model of more
complicated mutations like duplication-loss events. Indeed, in such a model,
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a sequence of mutations mimicing a duplication-loss event would have higher
likelihood than a sequence of similar mutations not having a common edge in the
breakpoint graph. However, a reassuring solution would be the explicit modelling
of these events.

The number of sequenced genomes grows quickly, and recent sequencing
projects meet the requirement of comparative genetics to sequence closely re-
lated genomes. It would be worth investigating bacterial and Eukaryota nuclear
genomes, as well. However, such a work will definitely be more complicated:
there might be several copies of genes, hence we cannot describe a genome as a
signed permutation. Additionally, pseudogenes, transposons, repetitive elements
should be modelled in a reasonable way. In spite of the difficulties, the authors
believe that stochastic modelling and MCMC will be the main key in modern
comparative genetics.
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Abstract. The distribution of the lengths of genomic segments inverted
during the evolutionary divergence of two species cannot be inferred di-
rectly from the output of genome rearrangement algorithms, due to the
rapid loss of signal from all but the shortest inversions. The number
of short inversions produced by these algorithms, however, particularly
those involving a single gene, is relatively reliable. To gain some insight
into the shape of the inversion-length distribution we first apply a genome
rearrangement algorithm to each of 32 pairs of bacterial genomes. For
each pair we then simulate their divergence using a test distribution to
generate the inversions and use the simulated genomes as input to the
reconstruction algorithm. It is the comparison between the algorithm
output for the real pair of genomes and the simulated pair which is used
to assess the test distribution. We find that simulations based on the
exponential distribution cannot provide a good fit, but that simulations
based on a gamma distribution can account for both single-gene inver-
sions and short inversions involving at most 20 genes, and we conclude
that the shape of latter distribution corresponds well to the true distri-
bution at least for small inversion lengths.

1 Introduction

The study of genome rearrangement has made it clear that the lengths of the
chromosomal segments inverted, transposed or reciprocally translocated is not
determined simply by a random choice of two breakpoints anywhere in the
genome. While this is very-well documented in eukaryotes [2, 10, 13, 5], it is also
true that prokaryotic genome rearrangement also operates under a variety of
constraints on inversion site and length of inverted segments [12, 17, 11]. In-
corporating information on such constraints into procedures for reconstructing
genome divergence, e.g. in terms of weights in a parsimony analysis, probabilities
in a likelihood analysis or priors in a Bayesian analysis, is a desirable goal for
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evolutionary methodology. With this motivation, in this paper we study the dis-
tribution of lengths of the segments that are inverted in the evolutionary history
of bacterial genomes. Inherent in this study are many assumptions, not the least
of which is that the distribution in question exists, i.e., represents a tendency rel-
atively fixed over time and across the phylogenetic spectrum of bacteria. While
we cannot resolve such a far-reaching question here, our results will provide a
measure of confirmatory justification.

Another assumption is that inversion is the dominant process of gene order
change in bacteria. Our approach will control for changes in genome size through
gene gain and gene loss, but not for the effects of simply transposing segments
from one area of the genome to another. This does not seem to be unwarranted;
we find no systematic discussion of a transposition process in the literature on
bacterial genomes, though transposition of small segments is very common in
eukaryotic nuclear genomes [5, 10], and duplication-loss, which has the same
effect as transposition, is often cited as an explanation for gene-order change in
eukaryotic organelle genomes [3].

In a previous study [11], we analyzed the inversion lengths inferred between
each of four pairs of bacterial genomes and discovered an unexpectedly high num-
ber of short inversions, single-gene inversions in particular. This contrasted with
the null hypothesis that the two breakpoints of an inversion occur randomly and
independently within the genome of length n, which predicts a uniform distribu-
tion U [1, n

2 ] of inversion lengths, where the n
2 reflects the fact that for a circular

genome, an inversion of length l is indistinguishable from the complementary
inversion of length n − l.

The present paper builds on the previous work in two ways. First, we greatly
expand our sample of genome pairs, from four to 32, deliberately picked to repre-
sent the range between closely-related and phylogenetically distant pairs, and we
use a more systematic method than in the previous paper for validating relations
of orthology within each pair. Second, rather than just reject the uniform null
hypothesis, we attempt to pin down aspects of the probability distribution of in-
version length in bacterial evolution. More precisely, we focus on the shape of this
distribution only where the inversions are short, namely single-gene inversions
and inversions of at most 20 genes. This rather restrained ambition is warranted
by the discovery in [11], summarized in Section 2 below, that in genomes that
have been even moderately rearranged by the accumulation of inversions, parsi-
monious methods such as that Hannenhalli-Pevzner (HP) algorithm [7], can only
recover the details of very short inversions. Simulations in [11] showed that the
longer inversions “recovered” by such algorithms are overwhelmingly different
from those used to generate the genomes.

In the next section of this paper we recap only the part of [11] which deals
with signal decay. In Sections 3 and 4 we describe our methods and data. Section
5 contains our results, which show that a two-parameter distribution function,
such as the gamma distribution, is necessary to reasonably fit the numbers of
short inversions observed in the 32 pairs of genomes, but that a one-parameter
distribution, such as that of the negative exponential distribution, is inadequate.
These results are further discussed in Section 6.
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Fig. 1. Frequency of inversion sizes (or lengths) inferred by the algorithm for random
genomes obtained by performing i inversions of length l = 50. The figure on the top is
for i = 80 and the bottom one is for i = 200

2 Decay of Evolutionary Signal with Inversion Length

Consider two genomes containing the same set of genes but in different orders,
where this difference is generated by evolutionary operations of a given type, such
as inversions. We first ask to what extent the evolutionary histories reconstructed
by the HP type of algorithm [7] actually reflect the true events. It is well-known
that past a threshold of θn, where n is the number of genes and θ is in the
range of 1

3 to 2
3 , the number of operations begins to be underestimated by edit

operation-based inferences (e.g., [8, 9]). Before that threshold, the total number
may be accurately estimated but whether any signal is conserved as to the actual
individual operations themselves, and which ones, is a different question.

In [11], we carried out the following test: For a genome of size n = 1000, we
generated i inversions of length l = 5, 10, 15, 20, 50, 100, 200 at random, and then
reconstructed the optimal inversion history, for a range of values of i. Typically,
for small enough values of i, the algorithm reconstructs the true inversion history.
Depending on l, however, above a certain value of i, the reconstructed inversions
manifest a range of lengths, as illustrated in Figure 1 (reproduced from [11]).
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Fig. 2. The solid line plots s, and the dotted line plots r (see text above)

For each l, we calculated
rl = min{i|reconstruction has at least 5% error}

and
sl = max{i|reconstruction has at most 95% error},

where any inversion having length different from l is considered to be an error.
Figure 2 (reproduced from [11]) plots r and s as a function of l and shows how
quickly the detailed evolutionary signal decays for large inversions. Nevertheless,
we note that for very small inversions, there is a clear signal preserved long after
longer ones have been completely obscured.

3 Method

In our quest for the distribution of inversion lengths in bacteria, there are three
steps applied to each pair of genomes in our sample:

– We use a carefully validated method for establishing orthologies between the
two genomes, based on both sequence and genomic context [4].

– We calculate the inversion distance between the two genomes, as well as a
number of detailed evolutionary scenarios exemplifying this distance

– We simulate a matching pair of genomes whose divergence is based on what-
ever distribution we are testing.

These steps are detailed in the following paragraphs.

3.1 Orthology

In the new method developed in [4], potential orthologs are evaluated according
to a number of criteria:
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– status of BLAST match; whether it is the best match in both directions
– quality of BLAST match; in terms of statistical significance
– scope of BLAST match with respect to the total length of the gene
– presence or absence of contextual markers conserved in both genomes
– whether there are near optimal competing genes in either genome

This enabled us to construct a matched set of orthologous genes in both
genomes with a maximum of confidence. Of course, some of the matches are
less clear than others, and the matches in closely related genomes tend to be
less ambiguous than in distant pairs. Nevertheless these matches represent a
systematic, multi-criterion, best estimate.

Once the matches are established, we constructed reduced genomes of equal
length by deleting those genes not identified as being in an orthologous match.
This paper reports on the analysis of these reduced genomes only, though we have
also analyzed the full genomes using an inversion/insertion/deletion procedure
[6]. Results from the latter were generally less clear, though they did not conflict
with the results reported here.

Note that our use of reduced genomes means that our characterizations of
inversions as “single-gene” or “1-20 genes” in the comparison of the reduced
genomes may sometimes refer to somewhat larger inversions when the deleted
genes from the unreduced genomes are restored.

3.2 Algorithm

The results of genome rearrangement algorithms are highly non-unique; many
different evolutionary scenarios have the same, minimal, number of steps.

In a previous publication [1] we developed a general method that allows a
choice among equally optimal solutions (i.e., the same minimal number of oper-
ations) generated by a HP type of algorithm, based on any one of many possible
secondary criteria. This takes advantage of the many equally valid choices that
may be available at each step of the algorithm.

Given our interest in short inversions, we adopt inversion length as our sec-
ondary criterion. Thus a solution can be obtained by selecting, at random, one of
the shortest allowable inversions at each step of the HP procedure. Running the
algorithm several times gives rise to several possible solutions. We can then tabu-
late how many times inversions of a particular length recur in the set of solutions.
In [11], we showed that this length-based strategy enhanced the difference be-
tween pairs of real genomes and simulated pairs where the inversion lengths were
sampled from the U [1, n

2 ] distribution. The number of reconstructed single-gene
and other short inversions, already higher in the real genome comparison than
in the simulations, based on HP with no secondary strategy, increased markedly
under the length-based strategy. There was little increase in the number of re-
constructed single-gene and other short inversions for the genomes created with
uniformly generated inversions. In other words, the increased number of short
inversions inferred by length-based strategy was not simply an artifact of this
strategy since it had little if any effect on the simulated genomes. Rather we
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attributed it to better detection of bonafide short inversions whose signal we
know to be conserved despite extensive genome rearrangement.

3.3 Simulations

To estimate the shape of the probability distribution of inversion lengths l, we
explored

– a single parameter distribution, namely a negative exponential distribution

p(l) = λe−λl. (1)

– a two-parameter distribution, namely a gamma distribution

p(l) =
lα−1e−l/β

βαΓ (α)
. (2)

For each each distribution p with cumulative P , we derived simulated pairs of
genomes to compare with each of the 32 real ones as follows. For a given pair of
bacterial genomes, let n be the length of the reduced genome, and let i be the
number of inversions necessary to derive one from the other, as measured by the
HP algorithm. We sampled somewhat more than i inversions (to compensate
for the bias introduced by parsimonious reconstruction in a later step) from the
probability distribution and used these to evolve a new circular genome starting
from 1, 2, · · · , n. One of the breakpoints for each inversion was located randomly
on the genome, and the second was located according to the sample inversion
length. If an inversion was longer than n/2, we discarded it and did not count
it, since and inversion of length l is the same as an inversion of length n − l for
a circular genome. So the effective length distribution was actually

p∗(l) =
p(l)

P (n
2 )

for
0 < l ≤ n

2
(3)

and zero elsewhere.

4 The Pairs of Bacterial Genomes

We informally sampled 32 pairs of genomes from those treated in [4], choosing
some that are as phylogenetically distant as possible, and some that are relatively
closely related. These are listed in Table 1, which also lists i, the minimum
number of inversions necessary to convert one (reduced) genome to another,
the size of the reduced genome n, i.e., the number of orthologous gene pairs in
the two genomes as determined by the method in [4], the normalized inversion
distance i/n, and the number of single-gene and 1-20 gene inversions.
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Table 1. Pairs of bacterial genomes in this study. n is the number of orthologous genes
identified in the two genomes, i is the inversion distance. Pairs ordered from least to
highest values of the normalized inversion distance i/n. Last two columns give the
number of inversions, out of a total of i, that involve just one gene and twenty or fewer
genes, respectively

genome A genome B i n i/n 1 ≤ 20

Neisseria meningitidis MC58 Neisseria meningitidis Z2491 53 1606 0.03 0 3
Salmonella typhi Shigella flexneri 2a 196 2801 0.07 4 16.4
Escherichia coli CFT073 Salmonella typhimurium LT2 244 3145 0.08 8.6 25.6
Mycobacterium leprae Mycobacterium tuberculosis CDC1551 109 1367 0.08 4 14.8
Staphylococcus aureus Mu50 Staphylococcus epidermidis ATCC 12228 148 1805 0.08 0.2 15.8
Streptococcus agalactiae 2603 Streptococcus pyogenes 201 1156 0.17 5 28.2
Streptococcus mutans Streptococcus pyogenes 211 1046 0.20 6 19
Agrobacterium tumefaciens C58 Uwash Circ Sinorhizobium meliloti 347 1705 0.20 14.6 50.4
Escherichia coli CFT073 Yersinia pestis CO92 642 2363 0.27 13 71
Pseudomonas aeruginosa Pseudomonas putida KT2440 996 3189 0.31 34 117.2
Corynebacterium glutamicum Mycobacterium tuberculosis CDC1551 380 1087 0.35 11.4 39.4
Bacillus halodurans Bacillus subtilis 748 1912 0.39 31 91.6
Salmonella typhi Vibrio cholerae ChI 584 1479 0.39 20 109
Listeria innocua Staphylococcus aureus Mu50 471 1085 0.43 22.4 69.6
Escherichia coli K12 Vibrio cholerae ChI 717 1648 0.44 29 108
Bacillus halodurans Listeria innocua 518 1186 0.44 22.6 61.2
Bacillus halodurans Oceanobacillus iheyensis 818 1856 0.44 18 105
Listeria monocytogenes Staphylococcus epidermidis 486 1080 0.45 15 78
Clostridium acetobutylicum Clostridium perfringens 564 1211 0.47 22.6 70.2
Salmonella typhimurium LT2 Shewanella oneidensis 741 1474 0.50 33.6 100
Clostridium perfringens Thermoanaerobacter tengcongensis 427 841 0.51 23 60
Oceanobacillus iheyensis Thermoanaerobacter tengcongensis 452 853 0.53 18.4 61.8
Pseudomonas putida KT2440 Vibrio cholerae ChI 639 1160 0.55 28.4 90.4
Staphylococcus epidermidis ATCC 12228 Thermoanaerobacter tengcongensis 359 623 0.58 17 56.6
Listeria innocua Thermoanaerobacter tengcongensis 450 770 0.58 21.8 64.2
Clostridium perfringens Staphylococcus epidermidis ATCC 12228 391 640 0.61 19.4 60
Bacillus halodurans Clostridium perfringens 619 944 0.66 28 81
Mycobacterium tuberculosis CDC1551 Mycoplasma penetrans 90 137 0.66 6 16
Bacillus subtilis Streptococcus agalactiae 2603 533 806 0.66 27.8 65
Bacillus halodurans Streptococcus pneumoniae R6 509 737 0.69 21.2 90.4
Staphylococcus aureus Mu50 Streptococcus pyogenes MGAS8232 649 939 0.69 25 127
Streptococcus mutans Thermoanaerobacter tengcongensis 432 598 0.72 18 76

We note that parts of the evolutionary history separating many of the gene
pairs are shared; perhaps the most obvious example is the E.coli – Vibrio and
Salmonella – Vibrio comparisons, since these reflect a largely similar historical
divergence, E.coli and Salmonella having a relatively recent common ancestor.
This kind of dependence, which in general increase measures of dispersion but
not bias, is not as great among our other pairs of genomes, and is in any case
virtually impossible to avoid in a phylogenetic context.

5 Results

Applying our algorithm to the 32 pairs of bacterial genomes, repeating each com-
parison ten times with different random choices of shortest allowable inversion
at each step, we counted the average number of single-gene inversions and the
average number of inversions of length 20 or less. These were normalized by n
and plotted against the normalized inversion distance i/n in Figure 3. We also
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plotted on Figure 3 the result of our simulations based on the negative exponen-
tial and gamma distributions. For the negative exponential, it can be seen that
a value of λ that allows the curve obtained from p(l) ≤ 1 to fit the real data
on single-gene inversions does not allow the curve obtained from p(l) ≤ 20 to fit
the real data on inversions of length 20 and less, and vice-versa. For the gamma
distribution, on the other hand, values of α and β can be found that fit both sets
of data, although for 1-20 gene inversions, the fit breaks down when i > n/2.

We found such values of the parameters of the gamma distribution by min-
imizing the sum of squared differences, between each real pair of genomes and
the corresponding simulated pair, of the normalized number of single-gene in-
versions in a minimal inversion scenario in plus the analogous difference for the
normalized number of 1-20 gene inversions. The latter differences were weighted
by a factor of 0.1, since the number of short inversions was approximately 10
times as large as the number of single-gene inversions. We iterated by fixing each
parameter in turn and searching for the minimizing value of the other parameter.

6 Discussion

To what extent do our results bear on the question of whether there is a uni-
versal distribution of inversion lengths across the bacterial domain? After all,
this distribution is the result of numerous mechanistic mutational processes at
the chromosomal level as well as selective processes operating on cell form and
function, both of which can be expected to vary among genomes.

The generality of the distribution can be assessed in part by the deviation
of the sample points from the overall trend in Figure 3. While it is true there is
a degree of statistical fluctuations, our results are thoroughly compatible with
the hypothesis that all the pairs are following a common tendency. That the
more distantly related genome pairs have fewer 1-20 gene inversions than the
corresponding simulated pairs indicates some tendency for the signal from the
short inversions to be lost for reasons other than genome rearrangement, which
should affect the simulated and real pairs in the same way. The observed shortfall
in the number of short inversions for normalized distances greater than about
0.45 is partly due to an greater incidence of undetectable orthology in the more
distant pairs, and partly to our way of treating unequal gene complements, of
accumulated gene gain and loss for these pairs. Neither of these problems affect
the simulated genome pairs. Whichever the explanation, the fact remains that
all the distant pairs manifest the same shortfall, and there is no idiosyncratic
behaviour from genome pair to genome pair evident at the aggregate level. Note
that overall inversion frequency is not addressed in our analysis, since we are
using no external time measure to calibrate the genomic distances, but this is
not pertinent to our results.

Recently, attention has been drawn to the prevalence and significance of short
inversions, albeit more in eukaryotes [2, 10, 16, 13, 5] than in prokaryotes [15, 11].
Here we have advanced our approach to the study of short inversions, taking ad-
vantage of the greatly elevated persistence in their evolutionary signal, compared
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Fig. 3. Fit of exponential and gamma models (open dots and trend lines) to data on
single gene inversions and 1-20 gene inversions (filled dots). Exponential parameter
λ = 0.002 or 0.05, gamma parameters α = 0.60, β = 1200

to that of longer inversions. We found that the distribution of inferred inversion
lengths could be accounted for by a gamma distribution for the generating in-
versions, with a high proportion of single-gene and other short inversions and
a rapid but non-exponential initial decline. The initial 30 values of the gamma
distribution with parameters α = 0.60, β = 1200 are depicted in Figure 4. Note
that we do not consider any but this first few values of l. The upper tail of the
gamma distribution is not relevant to this study; indeed our generation proce-
dure truncates most all of the domain of the distribution greater than n

2 . In any
case, we are using the gamma as a descriptive device and are not suggesting it is
theoretically privileged in being mathematically derived from some mutational
or selective model for the inversion process. Note that in [11] we ruled out a
uniform distribution as descriptively inadequate, and in the present paper we
also ruled out the exponential distribution.
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Fig. 4. Gamma distribution with parameters α = 0.60, β = 1200

How can the preference for short inversions be explained? We suggest that
it is a combination of factors:

– Single-gene inversions may represent a particular evolutionary mechanism
with selective functional consequences. They may allow a gene to obtain tran-
scriptional independence from its erstwhile operon, or to otherwise change
its expression pattern, or to take advantage of new or altered functionality,
or to participate in a different pathway through a more appropriate genomic
positioning (cf genomic hitchhiking [14]).

– Single-gene inversions may simply be the clearest manifestation of a uni-
versal tendency towards short inversions as the least disruptive of the gene
proximity configuration, and attendant functionality, of a genome. In [15], we
argued that a predisposition for such inversions in small genomes might ex-
plain the prevalence of internally-shuffled “gene clusters” found across many
sequenced genomes in microorganisms, in contrast to the “conserved seg-
ments”, including fixed gene order, pattern characteristic of the higher eu-
karyotes.

– Mechanistic process that favour mutational processes operating over short
distances.

Any knowledge about the distribution of inversion lengths would be invalu-
able to the inference of genome rearrangements. It is very difficult to obtain
suitable data, however, so that the approach offered here is an example of the
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indirect methods that must be developed in order to eventually home in on the
true distribution.
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Abstract. In a comparative map, the number of translocations in the
evolutionary history of a chromosome can be estimated solely on the
basis of the conserved syntenies it contains. This estimate, subtracted
from the number of conserved segments, then allows the estimation of the
number of inversions that have affected the chromosome. Summing these
estimates over all chromosomes provides a startlingly accurate estimator
(as assessed by simulation) of the total number of rearrangements of each
type occurring in the evolutionary divergence of two genomes.

1 Introduction

The quantitative comparative study of whole-genome maps, exemplified by the
linkage-based work of Nadeau and Taylor [8] and more recent versions based
on gene content of conserved segments [16, 15, 5], makes no formal reference
to the processes that create the breakpoints between conserved segments while
progressively fragmenting these segments. It only assumes implicitly that the
number of breakpoints and segments increases in proportion to the number of
rearrangement events affecting either of the two genomes being compared. In
contrast, the algorithmic approach to genome rearrangements [4, 19] infers a
most parsimonious history of specific inversions and reciprocal translocations.
The particulars of this inference are not always reliable due to the highly non-
unique nature of the solutions, the characteristic underestimation of parsimony
and, especially, the susceptibility of these methods to lose the details, though
not the overall trends, in the evolutionary signal [17].

Between these analytical extremes of ignoring the processes giving rise to
a comparative map and ambitiously trying to infer them in all their detail, are
there any limited aspects of rearrangement history that can be inferred with some
confidence? Building on the ideas in [13] and [14], we claim that by analyzing
the number of conserved syntenies in a comparative map, we can accurately
infer, using a simple estimator, the number of reciprocal translocations involved
in generating this map. Furthermore, depending on the degree of resolution of
the map, by contrasting the number of conserved segments with the number
of conserved syntenies, we can estimate the number inversions or other intra-
chromosomal events. Applying this methodology to data compilations on human-
mouse maps at differing levels of resolution shows that the estimated number

J. Lagergren (Ed.): RECOMB 2004 Ws on Comparative Genomics, LNBI 3388, pp. 109–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



110 David Sankoff and Matthew Mazowita

of reciprocal translocations is relatively stable, but that the inferred number of
inversions increases with finer resolution.

2 Models

We can model the autosomes of a genome as c linear segments with lengths
p(1), · · · , p(c), proportional to the number of base pairs they contain, where∑c

i=1 p(i) = 1. To balance realism and simplicity in our model, we:

– Set aside the sex chromosomes, which are largely excluded from inter-chro-
mosomal exchanges.

– Impose a threshold and a cap on chromosome size, rejecting any translo-
cation that results in a chromosome too small or too large. Theories about
meosis, e.g. [18], can be adduced for these constraints, though there are clear
exceptions, such as the “dot” chromosomes of avian and some reptilian and
other vertebrate genomes [2, 1].

– Impose a left-right orientation on each chromosome, such that a left-hand
fragment must always rejoin a right-hand fragment. In reality, an inverted
left-hand fragment may rejoin another left-hand fragment, but the only sta-
tistical effect of our restriction is to ensure that, throughout the simulation,
each chromosome always retains a segment, however small it may become,
containing its original left-hand extremity. This restriction models the con-
servation of the centromere without introducing complications such as trends
towards or away from acrocentricity.

– Postpone our consideration of chromosome fusion and fission, so that the
number of chromosomes is constant throughout the time period governed by
the model. Later, we simply assume that the case where fusions or fissions
occur will be well approximated by interpolating two models (with fixed
chromosome number) corresponding to the two genomes being compared.

We also assume the two breakpoints of a translocation are chosen independently
according to a uniform distribution over all autosomes, conditioned on their
not being on the same chromosome. There is no statistical evidence [11] that
translocational breakpoints cluster in a non-random way on chromosomes, except
in a small region immediately proximal (within 50-300Kb) to the telomere in a
wide spectrum of eukaryote lineages [7].

A reciprocal translocation between two chromosomes h and k consists of
breaking each one, at some interior point, into two segments, and rejoining the
four resulting segments such that two new chromosomes are produced, each
containing a left-hand part of one of the original chromosomes and the right-
hand part of the other. We label each new chromosome according to which
left-hand it contains, but for each of its constituent segments, we retain the
information of which ancestral chromosome it derived from.

With further translocations, if a breakpoint falls into a previously created
segment on chromosome i, it divides that segment into two new segments, the
left-hand one remaining in chromosome i, while the right-hand one, and all
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the other segments to the right of the breakpoint, are transferred to the other
chromosome involved in the translocation,

In contrast to translocations, the two breakpoints of an inversion cannot
be considered to be independently positioned on the chromosome. According
to Kent et al. [6] the median length of an inversion, of which there are many
thousands in the mouse-human comparison, is less than 1 Kb, so that on a chro-
mosomal scale most inversions have their two breakpoints very close together.

There are no definitive data on the distribution of inversion lengths. The best
that exist, based on human-mouse comparisons, were published in Table 2 of [6],
which estimates about 8000 inversions (with or without partial or complete du-
plications) with median length from 300-800 bp (depending on the subcategory
of inversion), including 160 inversions longer than 100 Kb within longer syntenic
blocks (intrablock inversions). In [10] it is estimated that there are 150 inver-
sions longer than 1 Mb; these each involve at least one whole syntenic block
(suprablock inversions) and hence do not overlap with the 160 previously men-
tioned. These data (median = 600 with 310 inversions out of 8000 longer than 1
Mb) determine a gamma distribution with shape parameter α = 6.539 and scale
parameter (on a logarithmic scale) β = 0.447. This distribution has a median
of 600 bp and a 0.05 tail > 100 Kb, to include 0.02 intrablock, 0.02 suprablock
and a generous 0.01 for those inversions falling through the cracks between the
definitions of 100 Kb intrablock and 1Mb suprablock inversions.

In our simulations, we will test our models with a much more disruptive dis-
tribution of inversion lengths. We generate these lengths according to a gamma
distribution with shape parameter α = 3 and scale parameter (on a logarithmic
scale) β = 1.127.

One inversion breakpoint is chosen at random on the genome, as with translo-
cations, and the second is chosen equiprobably to the left or right and according
to the specified gamma. If the second breakpoint exceeds the end of the chromo-
some, both breakpoints are disregarded and a substitute inversion is generated.
With this truncation protocol, keeping in mind the logarithmic scale, only about
7 % of the inversions are larger than 1 Mb. For any accounting of rearrangements
which allows 8000 or more inversions of all sizes, seven percent still represents
a generous number of very large inversions (> 1 Mb). We do this to provide
as severe as possible a test of the formulae we will develop, which are more
susceptible to fail if there are many large inversions.

The total number of segments on a human chromosome i is

n(i) = t(i) + 2u(i) + 1, (1)

where t(i) is the number of translocational breakpoints on the chromosome, and
2u(i) is the number of inversion breakpoints.

3 Prediction and Estimation

We assume that our random translocation process is temporally reversible, and
to this effect we show in Figure 1 and Section 4.1 that the equilibrium state of
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our process well approximates the observed distribution of chromosome lengths
in the human genome. This assumption allows us to treat the mouse genome as
ancestral and the human as derived (or vice versa), instead of considering them
as diverging independently from a common ancestor.

To start with, we consider a process that involves translocations but no in-
versions. At the outset, assume the first translocation on the human lineage
involves ancestral chromosome i. The assumption of a uniform density of break-
points across the genome implies that the “partner” of i in the translocation
will be chromosome j with probability pi(j) = p(j)

1−p(i) . Thus the probability that
the new chromosome labelled i contains no fragment of ancestral chromosome
j, where j �= i, is 1 − pi(j). For small t(i), after chromosome i has undergone
t(i) translocations, the probability that it contains no fragment of the ancestral
chromosome j is approximately (1 − pi(j))t(i) , neglecting second-order events,
for example, the event that j previously translocated with one or more of the
t(i) chromosomes that then translocated with i, and that a secondary transfer
to i of material originally from j thereby occurred.

Then the probability that the new (i.e., human) chromosome i now contains
at least one fragment from j is approximately 1− (1−pi(j))t(i) and the expected
number of ancestral chromosomes with at least one fragment showing up on
human chromosome i is

E(c(i)) ≈ 1 +
∑
j �=i

[1 − (1 − pi(j))t(i) ], (2)

where the leading 1 counts the fragment containing the left-hand endpoint of the
ancestral chromosome i itself. We term c(i) the number of conserved syntenies
on chromosome i.

3.1 The Case of No Saturated Chromosomes

Substituting c(i) for E(c(i)) in eqn (2) suggests solving

c − c(i) =
∑
j �=i

[1 − pi(j)]t̂
(i)

, (3)

to provide an estimator of t(i). Newton’s method, initialized by the estimator in
Section 3.4, converges rapidly for the range of parameters used in our studies,
as long as c(i) �= c. This is the empirically interesting case; we know of no com-
parative map where a chromosome of one genome shares at least one significant
syntenic segment with every autosome of the other genome.

Then t̂ = 1
2

∑c
i=1 t̂(i) is an estimator of the total number of translocations

intervening between the ancestral and modern genome, since each translocation
is counted on two chromosomes.

In the hypothetical case c(i) = c, we say chromosome i is saturated and there
is no solution to eqn 3. For the sake of completeness, we will also study this case.
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3.2 When There Are Some Saturated Chromosomes

If the genome after a certain number translocations contains at least one sat-
urated chromosome, i.e., with c(i) = c, our estimator must take on a different
form.

Let c∗ be the number of saturated chromosomes. Suppose there have been t
translocations in the evolutionary history, with

t(i) = 2tp(i) (4)

affecting autosome i. Since the probability is approximately 1− [1−pi(j)]t
(i)

that
at least one segment from original chromosome j is contained by chromosome
i, if these events were independent for all the c − 1 original chromosomes j,
(which they are obviously are not, for small values of t), then the probability
that c(i) = c, i.e., chromosome i contains segments from all c − 1 of the others,
as well as the original i by default, would be the

P (i, t) =
∏
j �=i

(1 − [1 − pi(j)]t
(i)

). (5)

Now, we may assume independence is asymptotically approached with large t,
so that the expected number of saturated chromosomes E(c∗) is approximately
Pt, where

Pt =
c∑

i=1

P (i, t), σ2 =
c∑

i=1

P (i, t)(1 − P (i, t)). (6)

These quantites can all be calculated from the pi(j) based on the given p(i).
Then, in the presence of c∗ saturated chromosomes, we define t̂(c∗) to be the
inverse function of Pt applied to c∗.

3.3 The Completely Saturated Case

The estimators in Section 3.2 are defined as long as c∗ < c. When all c chro-
mosomes are saturated, the completely saturated case, the best we can do is to
define t̂(c) = t̂(c − 1), with the understanding that this may well be a severe
underestimate.

3.4 Equal Size Chromosomes

When all chromosomes are of equal size, a situation that can be maintained only
by requiring the chromosomal fragments exchanged during translocation to be
of the same length,

E(c(i)) ≈ 1 + (c − 1)[1 − (1 − 1
c − 1

)t(i) ]. (7)

In this case [14], eqn (3) is directly solved as:

t̂(i) =
log(c − 1) − log(c − c(i))
log(c − 1) − log(c − 2)

. (8)
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3.5 The Effect of Inversions

Inversions have the effect of fragmenting and changing the order of the segments
that are transferred among chromosomes by translocation. An estimate of the
number of inversion breakpoints on a chromosome is derived from eqn (1) as

2û(i) = n(i) − t̂(i) − 1, (9)

and the number of inversions will be half that. The presence of inversions will
have an effect on the estimate of t. Modeling this effect of inversions is not
easy; prior inversions on chromosome j can either increase or decrease the effect
of a translocation of i and j on c(i). As the inversion rate increases, however,
the process becomes a “gossip” process among the c autosomes – after each
interaction (i.e., communication) between two chromosomes, they both contain
material from every original chromosome in the union of the two chromosomes
before the interaction. Here, the chromosomes are saturated at a very rapid rate.

4 Simulations

4.1 Equilibrium Distribution of Chromosome Size

Models of accumulated reciprocal translocations for explaining the observed
range of chromosome sizes in a genome date from the 1996 study of Sankoff
and Ferretti [12]. They proposed a lower threshold on chromosome size in order
to reproduce the appropriate size range in plant and animal genomes contain-
ing from two to 22 autosomes. A cap on largest chromosome size has also been
proposed [18] and shown to be effective [3]. Economy and elegance in explaining
chromosome size being less important in the present context than simulating
a realistic equilibrium distribution of these sizes, we imposed both a threshold
of 50 Mb and a cap of 250 Mb on the process described in Section 2, simply
rejecting any translocations that produced chromosomes out of the range. These
values were inspired by the relative stability across primates and rodents evident
in the data in Table 1.

Simulating the translocation process 100 times up to 10,000 translocations
each produced the equilibrium distribution of chromosome sizes in Figure 1.
The superimposed distribution of human autosome sizes is very close to the
equilibrium distribution.

Table 1. Shortest and longest chromosome, in Mb

genome shortest longest

mouse 61 199
human 47 246
rat 47 268
chimp 47 230
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Fig. 1. Comparison of equilibrium distribution of simulated chromosome sizes with
human autosome sizes

4.2 Domains of the Estimators

In 1000 runs of the simulation, the smallest t for which any chromosome was
found to be saturated was 127. Indeed, up to t = 348, no saturated chromosomes
were found in over half of the runs. By t = 552, however, all thousand runs had
at least one saturated chromosome. Figure 2 depicts how the mean number of
saturated chromosomes increases as a function of t.

As mentioned in Section 2, the range of empirical interest, at least for human-
mouse comparisons, is thus well within the range of the estimator based on eqn
(3). It is conceivable, however, that some remotely related genomes might require
the estimator based on eqn (5).

In 1000 runs, the smallest t for which a genome was found to be completely
saturated was 1747. By t = 2749, half of the runs were completely saturated; by
t = 3886 all were completely saturated.

4.3 Performance of the Estimator
When There Are No Saturated Chromsomes

Figure 3 (left) depicts the estimated number of translocations as a function
of the true number t in the simulation, when no saturated chromosomes are
encountered. For t < 400, the estimator t̂ appears completely unbiased, with
only moderate variance. As explained in Section 4.2 and as can be seen in Figure
2, t < 400 is also the range where saturated chromosomes are rarely encountered.

For higher values of t we had to run the simulation many additional thou-
sands of times to accumulate 100 runs without any saturated chromosome, fully
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Fig. 2. Average number, over 100 runs, of saturated chromosomes per genome, as a
function of the number of translocations. There are very few genomes with saturated
chromosomes for t < 400

conscious that this atypical sub-sample was unlikely to result in accurate esti-
mates of t. This accounts for the severe bias for large t.

4.4 Performance of the Estimator
with Some Saturated Chromsomes

Application of the version of the estimator presented in Section 3.2 to instances
where one or more of the chromosomes are saturated gave the results in Figure
3 (right). This has a small (around 70 translocations) constant (hence easily
corrected) negative bias over the range from t = 600, where there is still a
minority of genomes with any saturated chromosomes, to t = 2000, when most
genomes have many saturated chromosomes. The error rate, however, is much
higher than the estimator based on eqn (3) over the range where they can be
compared.

For low and high values of t we had to run the simulation many extra times to
accumulate 1000 runs with at least one but less than 22 saturated chromosomes.
The bias this introduces is evident for t < 500.

4.5 The Effect of Inversions on t̂

In our simulations, we interspersed v inversions between successive transloca-
tions, for v = 0, 1, 10, 50 and 100. The effect of this was to bias t̂ positively,
a proportion of inversions being inferred as translocations. This is depicted in
Figure 4. This bias seems quite severe for the larger values of v, but it should be
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Fig. 3. (Left) Mean value, over 100 runs, of t̂ as a function of t where there are no
saturated chromosomes. Error bars ±1 s.d. Estimator t0 based on equal-length chro-
mosome model, eqn (8). (Right) Mean value, over 1000 runs, of t̂ as a function of t for
the case of saturated chromosomes, using the version of the estimator in Section 3.2.
Note that as in Figure 2, there are very few genomes with saturated chromosomes for
t < 400

remembered from Section 2 that to detect these effects we are using very exag-
gerated inversion lengths. When we substitute a more realistic gamma function,
no bias is apparent, even for v = 50 as indicated in the figure.

It is ironic that as while high inversion rate increases the bias in translo-
cations rates, it actually decreases the bias in estimating the inversion rate, as
a proportion of the total number of inversions. This follows since a small pro-
portion of the number of inversions will be a large proportion of the number of
translocations.

4.6 The Effect of Inversions on Saturation

The addition of inversions to the simulation accelerates the saturation of the
chromosomes.

In our simulations, the lowest t’s for which we encountered a saturated chro-
mosome (c∗ = 1) was t = 127 with no inversions (the second lowest was t = 195),
t = 140 with one inversion per translocation, t = 145 with ten inversions per
translocation, t = 133 for 50 inversions, t = 110 for 100 inversions, and t = 38
for the gossip process (1000 runs with zero, one, ten inversions and gossip, 100
runs with 50 and 100 inversions).

The lowest t’s for which we encountered a completely saturated case (c∗ = c)
was t = 1747 with no inversions, t = 1653 with one inversion per translocation,
t = 1177 with ten inversions per translocation, t = 729 for 50 inversions, t = 450
for 100 inversions, and t = 71 for the gossip process.
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Fig. 4. Increase in number of translocations inferred as a function of intrachromosomal
activity (inversions). Curves labelled by number of inversions per translocation. Curves
end when computing time considerations make it unfeasible to accumulate 100 runs
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models of inversions, one with a realistic inversion length distribution and the other
with exaggerated inversion lengths. The heavy line shows the result of using the realistic
distribution: virtually no effect on the accuracy of the estimator. The thin line shows
what would happen were the inversion lengths unrealistically large

The way in which c′ grows in the presence of large numbers of inversions
should approach the performance of the gossip process discussed in Section 3.5,
so that saturation should be reached at the same time as the gossip process. It
is clear from these results that even with 100 inversions per translocation, we
are still quite far from the limiting case.

5 Application to the Human-Mouse Comparison

To illustrate the use of the estimators, for the 22 human autosomes, a 100 Kb
resolution construction abstracted from the UCSC Genome Browser indicates
237 autosomal segments, while the sum of the c(i) is 107. Solving eqn (3) for
each autosome, based on its c(i), summing the 22 values of t̂(i), and dividing by
2, gives a total of 50 translocations.

By eqn (1), this leaves unaccounted for

2
∑

û(i) =
∑

n(i) − 2t̂ − 22
= 115

segments, which must be attributed to local rearrangements such as û ≈ 58
inversions.
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Table 2. Inference of inter- and intra-chromosomal rearrangements based on num-
ber of conserved segments and number of segment-sharing autosome pairs in the two
genomes. Calculated separately from data on segments on 22 human autosomes (H) and
on 19 mouse autosomes (M). Sources: UCSC Genome Browser May 2004, builds Mm5
and Hg17, level = 1, alignments ≥ 100 Kb, GRIMM 300 Kb and 1 Mb blocks, from
http://nbcr.sdsc.edu/GRIMM/HMR Aug2003, NCBI human build 34.3 and mouse
build 32.1

resolution of autosomal segment-sharing inter- intra-
comparative map segments chromosome pairs chromosomal chromosomal∑

n(i)
∑

c(i) 1
2

∑
t̂(i)

∑
û(i)

H/M H/M/mean H/M/mean

100 Kb (UCSC) 237 254 107 50 51 50 58 67 62
300 Kb (GRIMM) 377 377 109 50 52 51 127 127 127
1 Mb (GRIMM) 268 268 104 47 49 48 76 76 76
n/a (NCBI) 379 381 110 51 53 52 128 128 128

Table 2 shows the results of these calculations for this and a number of other
maps of various levels of resolution. Of interest is the relative stability of the
estimates of the number of reciprocal translocations versus the dependence of
local rearrangements on resolution.

6 Discussion

We have documented the behaviour of an estimator of the number of transloca-
tions intervening between two rearranged genomes, based only on the numbers
of conserved syntenies on each chromosome, the lengths of the chromosomes and
a simplified random model of interchromosomal exchange. In the absence of in-
versions, this estimator has undetectable bias up to 400 translocations, and has
a rather moderate variance. Addition of high rates of inversion introduces some
bias, though to detect this in our simulations we had to use many thousands
of unrealistically large, hence maximally disruptive, inversions. If we also know
the number of conserved segments, we can infer the number of inversions with
corresponding accuracy.

The good properties of this estimator even after hundreds of translocations
are remarkable given that it only explicitly takes into account the first-order
effects of interchromosomal exchange. The fact that the introduction of chromo-
some sizes improves the estimator to such a degree compared to the previous
version in [14], is somewhat surprising in that these sizes fluctuate greatly during
the simulation.

Though this estimator is almost always well-defined and accurate (i.e., un-
biased) for over 400 translocations in the human case, even in the presence of
considerable intrachromosomal activity, we also explored a version of the esti-
mator applicable to the situation with saturated chromosomes. This situation
would be of some practical interest between 300 to 1000 translocations or more,
though we are not aware of such cases being discussed in the biological liter-
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ature. We found the estimator to be accurate after about 600 translocations,
with a small but constant bias. We looked into this estimator because it was de-
rived differently from eqn (3), but there are other, perhaps better, possibilities.
For example, instead of solving eqn (3) for each chromosome separately, we are
currently investigating the incorporation of eqn (4) into (3), so that we can solve

c2 −
∑

c(i) =
∑

i

∑
j �=i

[1 − pi(j)]2t̂p(i), (10)

for t̂ directly for the entire genome, dispensing with the distinction between
models for genomes having no saturated chromosomes and those having some.

In this paper, we applied our estimate to the human-mouse comparison at
various levels of resolution. This showed that translocation estimates are ex-
tremely stable, while variability in the number of inversions inferred accounted
for all the variation in the number of conserved segments due to differing levels
of resolution. This reflects the discovery of high numbers of smaller-scale local
arrangements recognizable from genomic sequence [6].

Our estimates of the number of translocations and inversions in the evolu-
tionary divergence of man and mouse are only about a half of what has been
published by Pevzner and Tesler [9, 10] who have attempted to reconstruct al-
gorithmically the details of this history. Our model assumes each translocation
and inversion creates two new segments, but the algorithms require a number
of rearrangements almost equal to the number of segments to account for how
the segments are ordered on the chromosomes. This accounts for the difference
between the two sets of results. The reason the algorithms require one rearrange-
ment per segment instead of one rearrangement per two segments is either

– Rearrangements almost always use at least one previously used breakpoint
per rearrangement instead of two new ones, because breakpoints are largely
confined to a small number of fragile regions on each chromosome, so that
there is no parsimonious analysis of the segment orders which involves all or
mostly two-breakpoint rearrangements, or

– Our two breakpoint per rearrangement model is correct, but the neglect,
in the algorithmic approach, of segments smaller than a certain threshold
value obscures the history and presents the algorithm with an effectively
randomized order of segments along the chromosome [17]. Genomes with
randomly ordered chromosomal segments tend to require one rearrangement
per segment.

In any case, we also note that the proportion of inversions and translocations, if
not their absolute numbers, is the same in our approach as in the results of the
algorithmic approach.

Our model includes a feature that approximates the principle of conserva-
tion of the centromere. This principle prohibits translocations that result in one
chromosome with no centromere and the other with two centromeres. In ongo-
ing work we are attempting to drop this feature, since it is not always operative
on the evolutionary time scale, taking into account such mechanisms as cen-
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tromere inactivation and neocentromere activation, or chromosome fusion and
chromosome fission.
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